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Abstract

RING EXTENSIONS INVOLVING AMALGAMATED DUPLICATIONS

Timothy S. Long, PhD

George Mason University, 2014

Dissertation Director: Dr. Jay Shapiro

We investigate properties of the amalgamated duplication of a ring along an ideal (which

we will usually refer to simply as a bowtie ring), recently studied most notably by D’Anna,

Fontana, and Finocchiaro. If I is an ideal of a ring R, then the basic construction of the

amalgamated duplication of R with I is {(r, r + i)|r ∈ R, i ∈ I}. For rings R,R′ and an ideal

I of R′ the general construction involves a ring homomorphism f : R→ R′ and is given by

{(r, f(r) + i)|r ∈ R, i ∈ I}. We will consider in particular different types of ring extensions

in which the base ring and the extension ring are both amalgamated duplications.

In Chapter 2 we provide some introductory lemmas to be employed later. After describ-

ing when a construction will be a ring and when two such constructions will be equal, we

see how set operations affect bowtie rings, observing what rings result from taking sums,

composites, and intersections of bowtie rings. We use these results conversely to examine

when an arbitrary ring can be written as a sum, composite, or intersection of certain types

of bowtie rings.

The subsequent chapter looks at the partially ordered set of intermediate rings between

two bowtie rings (where the partial order is inclusion as subrings). For any given ring R

we find an order-isomorphism between the subrings of R×R containing R (embedded into



R × R along the diagonal) and the ideals of R; in particular, if R is an arithmetical ring,

this order-isomorphism is a lattice isomorphism. We show for any ideals I ⊂ J of R, that

the correspondence holds for the rings lying between R ./ I and R ./ J and the ideals of R

lying between I and J . For a ring extension R ⊂ T where J is an f(T )−subalgebra of T ,

a similar correspondence is found between the intermediate rings of R ./f J ⊂ T ./f J and

the intermediate rings of R ⊂ T . In this chapter we also consider minimal ring extensions

(i.e., ring extensions R ⊂ T with no rings lying strictly between the two), and we determine

when an extension involving two bowtie rings is minimal.

Next, in the Flat Epimorphisms chapter (Chapter 4) we characterize when a homo-

morphism of one bowtie ring into another bowtie ring is a flat epimorphism (thus a ring

extension of the form usually studied in this document is a special case, where the map

is simply the inclusion map). Specifically, if f : R → T a ring homomorphism, and I,

J are an f(R)−subalgebra and an f(T )−subalgebra of T , respectively, with I ⊆ J , then

defining f ′ : R ./f I → T ./f J as f ′((t, t + j)) = (f(t), f(t) + f(j)) we find that f ′ is a

flat epimorphism if and only if f is a flat epimorphism and J = f(I)T . As an application

we show that this result can be used to construct flat epimorphisms that are not minimal

extensions.

In the Complemented Rings and Related Topics chapter, we observe situations where

a bowtie ring will have some related properties known as Property A, the (a.c.), Min(R)

being compact, and the ring R being complemented.

It is known that if I is a regular ideal of a ring R, then tq(R ./ I) = tq(R)×tq(R) (where

tq(S) is the total quotient ring of a given ring S). After analyzing the above properties in the

case where I is regular, we supplement this result by observing the structure of tq(R ./ I).

With only the information provided in Chapter 3 we see that tq(R ./ I) = tq(R) ./ J for

some (possibly improper) ideal J of tq(R), and this is sufficient information to show that

R ./ I is complemented if and only if R is complemented. We complete the chapter by

describing the exact form of tq(R ./ I) for any ideal I of any ring R.

Finally, in Chapter 6 we consider integrality of extensions of bowtie rings. We see that



R ./ I ⊂ R ./ J is always an integral extension (for any ideals I ⊂ J of a ring R) and find

cases of bowtie ring extensions that are not integral. Further, we use the description of the

total quotient ring of a bowtie ring (found in Chapter 5) to exactly describe the integral

closure of a bowtie ring. Later we show that if R is an integrally closed subring of a ring T

and J is a common ideal to both of these rings, then R ⊂ T is a normal pair if and only if

R ./ J ⊂ T ./ J is a normal pair.

We study various extension ring properties closely related to integrality, including lying-

over, going-up, incomparability, and going-down. The first three of these properties give

predictable results. However, given ideals I ⊆ J of rings R ⊆ T , respectively, we find that

the extension R ./ I ⊂ T ./ J satisfying going-down is equivalent to the properties that

R ⊆ T satisfies going-down and for every pair of primes P ⊂ Q of T , I * P and J * Q

implies that I * Q.



Chapter 1: Introduction

1.1 Notation

Throughout the following document we let every ring be commutative with identity element

1 6= 0. We assume that all ring homomorphisms (and thus all ring extensions) are unital

(i.e., for any ring homomorphism f : R → S we have that f(1R) = 1S and for any ring

extension R ⊆ T we have 1R = 1T ). Let R be a ring. We let Spec(R), Max(R), and

Min(R) denote the set of prime ideals, maximal ideals, and minimal prime ideals of R,

respectively. We use dim(R) to denote the (Krull) dimension of R.

An element x of R is nilpotent if xn = 0 for some nonnegative integer n. We will use

Nil(R) to denote the nilradical of R, i.e., the set of all nilpotent elements of R (which

forms an ideal in R); we say R is reduced if Nil(R) = 0. We use Z(R) to denote the set of

zero-divisors in R, Reg(R) to denote the regular elements of R (i.e., the non-zero-divisors in

R), and we use tq(R) to denote RReg(R) :=
{
r
s |r ∈ R, s ∈ Reg(R)

}
, the total quotient ring

of R.

If T is an extension ring of R we say an element t ∈ T is integral over R if it satisfies

some polynomial with coefficients in R and leading coefficient 1. We use RT , to denote the

integral closure of R in T (i.e., the set of elements in T that are integral over R). This set

forms a subring of T ; in particular, the sum of two integral elements is integral. We remove

the superscript and write R to denote the integral closure of R (that is, the integral closure

of R in its total quotient ring). We say R is integrally closed in T (resp., integrally closed)

if RT = R (resp., R = R).

Given an ideal I ⊆ R we will write AnnR(I) for the annihilator of I, i.e., AnnR(I) :=

{r ∈ R|rI = 0}. If I = (x) is principal we will write AnnR(x) for the annihilator of (x)

1



(and also refer to this as the annihilator of x). An ideal I is called regular if it contains a

regular element, and dense if AnnR(I) = 0. Clearly every regular ideal is dense. We say R

is quasilocal if it has a unique maximal ideal m; in this case we often write R as (R,m).

Given rings R,R′ and a ring homomorphism f : R → R′ we will use the notation

R∆ := {(r, r)|r ∈ R} as a subring of R × R (resp., Γ(f) := {(r, f(r)|r ∈ R} as a subring of

R×R′) and describe this as the diagonal image of R in R×R (resp., in R×R′). This is a

subring of R×R (resp., R×R′) isomorphic to R.

We let N denote the positive integers and identify these as the “natural numbers.”

Finally, we use ⊂ to denote strict containment.

1.2 Nonstandard Conventions

Remark 1.2.1. Let R be a ring. For the remainder of this dissertation we will adopt the

following unconventional definition for an R-algebra: Let A be an R-module where A is

also a multiplicative semigroup, possibly without 1 (we retain all the usual axioms for A

to be an R-algebra except that we allow the possibility A might not have a multiplicative

identity.) Under this same definition, if B is an R−algebra contained in A we will say that

B is an R-subalgebra of A.

Remark 1.2.2. In this dissertation when we simply refer to an ideal I of a ring R, we allow

that possibilities the I = 0 or I = R (unless otherwise noted). Similar allowances apply to

“subalgebras” (as they are defined in the previous remark).

1.3 Background

In 1932 Dorroh gave an algebraic construction that would allow any ring to be embed-

ded into a ring with identity [D3]. Specifically, for a ring R without identity, the set

{(n, r)|n ∈ Z, r ∈ R} with multiplication defined by (n, r)(m, s) = (nm, ns+ rm+ rs) is a

ring with identity (1, 0) into which R embeds via the map r 7→ (0, r). The non-unital ring
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{(0, r)|r ∈ R} ∼= R in fact becomes an ideal in this new ring. The new unital ring construc-

tion is sometimes referred to as a Dorroh ring, and we will adhere to this terminology.

In [N] (also see [N2]) M. Nagata- the mathematician best known for solving Hilbert’s 14th

problem- considered a specific case of Dorroh’s construction, introducing the idealization of

a module. Idealization has become an invaluable tool in algebra for constructing examples

and counterexamples of numerous types of rings. It is defined as follows: for a commutative

ring R (with identity 1) and an R−module M , we define the idealization of M (over R),

or the trivial extension of R by M , to be the set R nM := {(r,m)|r ∈ R,m ∈M} (also

occasionally written as R(+)M) with addition defined componentwise as in the R−module

R⊕M , but with multiplication given by (r,m)(s, n) = (rs, rn+ sm). This produces a ring

with identity element (1, 0). Here R embeds into R nM via the map r 7→ (r, 0), and M

embeds into it via the map m 7→ (0,m); the image of M is an ideal of RnM whose square

is zero.

In this paper we discuss a very similar construction, called an amalgamated duplication

of a ring along an ideal or simply a bowtie ring, as well as a standard generalization of

this construction. The original construction involves an ideal I of a ring R, and is given

by the construction R ./ I := {(r, r + i)|r ∈ R, i ∈ I} where addition and multiplication

are componentwise as in R × R. This can be considered as an extension ring of R via the

embedding of R into R ./ I given by r 7→ (r, r). Another way to view the ring R ./ I is by

taking the set {(r, i)|r ∈ R, i ∈ I} with addition defined pointwise as in the R−module R⊕I,

and with multiplication given by (r, i)(s, j) = (rs, rj + si + ij). The original construction

is isomorphic to this one via the map (r, r + i) 7→ (r, i) (and it follows that R embeds into

this ring via the map r 7→ (r, 0)). In the second form it is easy to see that if I2 = 0, then

the bowtie ring is isomorphic to Nagata’s idealization of the R−module I. Alternatively,

letting I be an ideal of R = Z and taking I to be our ring without identity in Dorroh’s

construction, we see easily that R ./ I is also isomorphic to Dorroh’s ring with identity via

the map (r, r + i) 7→ (r, i) (respectively, via the map (r, i) 7→ (r, i), in the second form of

R ./ I).

3



Following [DFF2] (with only slightly modified notation), the more general case of the

bowtie construction is described here. Let R,R′ be rings with I an ideal of R′ and let

f : R 7→ R′ be a ring homomorphism. Then we define R ./f I = {(r, f(r) + i)|r ∈ R, i ∈ I}.

This construction is referred to as the amalgamated duplication of the ring R along the ideal

I with respect to f . It is a clear generalization of the amalgamated duplication of a ring

along an ideal as described above. Further, this construction simultaneously generalizes

some important constructions in commutative ring theory, including Dorroh’s embedding

into a ring wih identity and Nagata’s idealization, the classical D + M construction, and

the A+XB[X] and A+XB[[X]] constructions (cf. [DFF2]).

Although similar constructions to these “bowtie rings” were briefly employed by Shores

in [S2] and Corner in [C], it was D’Anna and Fontana who gave the structure much analysis

more recently in [D], [DF], and [DF2] (with a small error in [D] corrected by Shapiro in

[S1]). D’Anna and Fontana were joined by Finocchiaro to study the construction further in

[DFF] and [DFF2], and Finocchiaro included many of these results along with new ones in

his PhD dissertation [F]. The construction- in both the general and non-general cases- has

gained much interest in the field of commutative algebra over the last decade. We wish to

expand on the literature by investigating how these ring constructions behave in the context

of ring extensions.

1.4 Amalgamated Duplications (“Bowtie Rings”)

For a ring of the form R ./ I or R ./f I as described in the previous section, multiple

names have been used, including an amalgamated duplication of a ring along an ideal, an

amalgamated duplication ring, and- mainly in a noncommutative context- a Dorroh ring or

an ideal extension. For brevity, we will adhere to the terminology bowtie ring, as used in

[DS4]. For reference we recall the definitions in the following remark.

Remark 1.4.1. Let I be an ideal of a ring R, and define R ./ I := {(r, r + i)|r ∈ R, i ∈ I}.

Henceforth, any ring of the form R ./ I (I and ideal of the ring R, or more generally an

4



R−algebra) will be referred to as a simple bowtie ring, or a simple bowtie extension of R.

In our most basic context we will investigate ring extensions of the form R ./ I ⊂ T ./ J

where R ⊆ T is a ring extension and I, J are ideals of R, T , respectively, such that I ⊆ J .

We will define the more general construction with algebras rather than ideals; the reasons

for this will become evident in Chapter 3. If f : R → R′ is a ring homomorphism and I is

an f(R)−subalgebra of R′, then a ring of the form R ./f I := {(r, f(r) + I)|r ∈ R, i ∈ I}

will be referred to as a general bowtie ring, or a general bowtie extension of R. Given a ring

homomorphism f : T → T ′ and a subring R of T we will slightly abuse notation by also

simply writing f for the map f restricted to R. Our primary focus will be investigating

ring extensions of the form R ./f I ⊂ T ./f J , where f : T → T ′ is a ring homomorphism,

R ⊂ T is a ring extension, I is an f(R)−subalgebra of T ′, and J is an f(T )−subalgebra

of T ′ such that I ⊆ J . Note that this generalizes ring extensions of the form described in

the previous paragraph (which belong to the special case where T = T ′ and f is simply the

identity map).

Remark 1.4.2. We allow R to embed into R ./ I (resp., R ./f I) along the diagonal

R∆ := {(r, r)|r ∈ R} ∼= R (resp., Γ(f) := {(r, f(r))|r ∈ R} ∼= R). Thus we have that

R∆ ⊆ R ./ I ⊆ R×R (resp., Γ(f) ⊆ R ./f I ⊆ R×R′). Note that the diagonal image and

cross product can be viewed as bowtie rings as well, for R∆ = R ./ 0 and R ×R = R ./ R

(and generally, Γ(f) = R ./f 0 and R×R′ = R ./f R′).

In the study of bowtie rings of the form R ./f I, the two ring extensions that ostensibly

garner the most attention are the extensions Γ(f) ⊆ R ./f I and R ./f I ⊆ R × R′. We

note that the general extensions R ./f I ⊂ T ./f J studied in this paper generalize both

of these extensions by the above remark. Namely, setting I = 0, T = R, our extension

has the form Γ(f) ⊆ R ./ J . Alternatively, setting T = R, J = R′, our extension becomes

R ./f I ⊂ R ./ R′ = R × R′. This paper also generalizes any extensions of rings that can

be described by the general bowtie construction, for instance the extension A + XB[X] ⊂

A+XB[[X]] (where A ⊆ B is any ring extension).

5



Example 1.4.3. For perhaps the easiest example of an extension relative to this paper let

R = Z, I = 4Z, J = 2Z. Then R ./ I is the set of all pairs (x, y) ∈ Z × Z such that x and

y differ by a multiple of 4, and R ./ J is the set of pairs that differ by an even number.

Clearly R ./ I ⊂ R ./ J , so we have an extension of simple bowtie rings.

Example 1.4.4. Let R be a ring and set R′ = R[[X]]. If we set I = XR[X] and J =

XR[[X]], and f as the natural embedding from R into R′, we have an extension of general

bowtie rings where the ring R stays fixed, R ./f I ⊂ R ./f J . In this sense the extension

of bowtie rings is simply another way to write the extension R[X] ⊂ R[[X]] (cf. [DF2,

Example 2.5]).

As we will see, extensions where the ring R or f(R)−subalgebra I stays fixed will be

critical in our study of minimal ring extensions. When the subalgebra stays fixed we will

denote it by J rather than I, noting the importance of the larger subalgebra in the general

extension R ./f I ⊂ T ./f J : specifically, J will always be an f(R)−algebra, but there is

no guarantee that I will be an f(T )−algebra.

Example 1.4.5. Let R ⊂ T be a ring extension. Consider the rings R′ = R + XT [X]

and T ′ = T [X]. Then setting J = XT [X] and f : T → T [X] as the natural embedding,

we have an example of an extension of general bowtie rings where the ideal J stays fixed,

R ./f J ⊂ R′ ./f J .

Example 1.4.6. Finally, for a straightforward example where neither the ring R, nor the

f(R)−subalgebra I stays fixed, let R = Z, T = Q, T ′ = Q[X], I = XZ[X], J = XQ[X].

Now set f : T → T ′ as the natural embedding. Then the extension R ./f I ⊂ T ./f J can

be viewed another way to write the extension Z[X] ⊂ Q[X].

1.5 Some Known Results

Many properties of bowtie rings have been analyzed over the last decade and the majority

of these were investigated by D’Anna, Fontana, and Finocchiaro (cf. [DF], [DFF], [DFF2]).
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In this section we record a few important known results, in particular those that will be

relevant to our study of bowtie rings.

The following proposition is essentially condensed version of [DFF2, Proposition 5.1].

Proposition 1.5.1. Let f : R→ R′ be a ring homomorphism, I an ideal of R′, and define

R ./f I = {(r, f(r) + i|r ∈ I, i ∈ I}.

1. R ./f I contains (an isomorphic image of) R as a subring, namely Γ(f) :=

{(r, f(r))|r ∈ R} into which R maps via the isomorphism r → (r, f(r)).

2. For any ideal J of R, the set J ./f I = {(j, f(j) + i|j ∈ J, i ∈ I} is an ideal of R ./f I.

Further, we have the following canonical isomorphism:

R ./f I

J ./f I
∼=
R

J
.

3. The sets {0} × I and f−1(I) × {0} are ideals of R ./f I and the following canonical

isomorphisms hold:

R ./f I

{0} × I
∼= R,

R ./f I

f−1(I)× {0}
∼= f(R) + I.

4. The sets f−1(I)× I and I are ideals of the rings R ./f I and f(R) + I, respectively,

and the following isomorphism holds:

R ./f I

f−1(I)× I
∼=
f(R) + I

I
.

In particular, if f is surjective then this gives the following isomorphism

R ./f I

f−1(I)× I
∼=
R′

I
.

7



It is not hard to see that when I 6= 0, then the simple bowtie ring R ./ I is never an

integral domain (since for any nonzero i ∈ I, we have (i, 0)(0, i) = (0, 0)). However it is

possible for a general bowtie ring R ./f I to be a domain even if I 6= 0 and R is not a

domain.

Proposition 1.5.2. [DFF2, Proposition 5.2] With the notation of Proposition 1.5.1, if

I 6= 0, then the following are equivalent.

1. R ./f I is an integral domain.

2. f(R) + I is an integral domain and f−1(I) = {0}.

In particular, if R′ is an integral domain and f−1(I) = {0}, then R ./f I is an integral

domain.

Given an ideal I of a ring R, it is clear that R ./ I is reduced if and only if R is reduced.

This contrasts Nagata’s Rn I construction, which will never be reduced (assuming I 6= 0).

It is also possible that the general bowtie ring R ./f I will not be reduced, even if R is.

Proposition 1.5.3. [DFF2, Proposition 5.4] With the notation of Proposition 1.5.1, the

following conditions are equivalent.

1. R ./f I is a reduced ring.

2. R is a reduced ring and Nil(R′) ∩ I = {0}.

If R and R′ are reduced, then R ./f I is reduced. If R ./f I is reduced and I is a radical

ideal, then R and R′ are reduced.

Numerous ring properties are equivalently satisfied by R ./ I and R, including R being

reduced, R being quasilocal, and R being Noetherian. In the context of general bowtie

rings, these conditions may become slightly more complicated.

Proposition 1.5.4. [DFF2, Proposition 5.6] With the notation of Proposition 1.5.1, the

following conditions are equivalent.
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1. R ./f I is a Noetherian ring.

2. R and f(R) + I are Noetherian rings.

Concerning chains of ideals, we also know the following result on Krull dimension.

Proposition 1.5.5. [DFF, Proposition 4.1] With the notation of 1.5.1, then dim(R ./f

I) = max {dim(R), dim(f(R) + I)}. In particular, if f is surjective, then dim(R ./f I) =

max {dim(R), dim(R′)} = dim(R).

Corollary 1.5.6. If I is an ideal of a ring R, then dim(R ./ I) = dim(R).

The following combines [DFF, Proposition 3.1] and [DFF, Proposition 3.4].

Proposition 1.5.7. Let f : R → R′ be a homomorphism of rings, and let f−1(I), I be

regular ideals of R,R′, respectively. Then

1. tq(R ./f I) ∼= tq(R)× tq(R′), and

2. R ./f I = R× f(R) + I.

The next lemma follows from [DF2, Proposition 2.2]. Note that the cases for I = 0 and

I = R hold trivially.

Lemma 1.5.8. Let I be an ideal of a ring R. Let P be a prime ideal of R and set

• P0 = {(p, p+ i)|p ∈ P, i ∈ I ∩ P},

• P1 = {(p, p+ i)|p ∈ P, i ∈ I} (“form 1”), and

• P2 = {(p+ i, p)|p ∈ P, i ∈ I} (“form 2”).

(a.) If I ⊆ P , then P0 = P1 = P2 is a prime ideal of R ./ I and it is the unique prime ideal

of R ./ I lying over P .

(b.) If I * P , then P1 6= P2, P1 ∩ P2 = P0, and P1 and P2 are the only prime ideals of

R ./ I lying over P .
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(c.) The extension P (R ./ I) of P in R ./ I coincides with {(p, p+ i)|p ∈ P, i ∈ IP} and,

moreover,
√
P (R ./ I) = P0.

Furthermore, every prime of R ./ I can be written in form 1 or form 2 for some prime

P ∈ Spec(R).

Proof. The majority of this lemma is simply [DF2, Proposition 2.2]. The final statement

then follows from the rest of the lemma and [D, Remark 1(a)] because the integral extension

R ./ I of R(∼= R∆) satisfies lying-over [K, Theorem 44].

Corollary 1.5.9. Let I be a proper ideal of a ring R. Then R is quasilocal (with unique

maximal ideal M) if and only if R ./ I is quasilocal (with unique maximal ideal

{(m,m+ i)|m ∈M, i ∈ I}).

The corollary above is one of the only results in this document that requires that I

be proper. Note that if I = R and R is quasilocal with unique maximal ideal M , then

R ./ I = R ./ R = R×R is no longer quasilocal, now containing the two distinct maximal

ideals M ×R and R×M .

Finally, we make a quick note on localization. This proposition was presented in [D,

Proposition 2.7]. An alternate proof for the second statement was given in [DS3, Proposition

4.4(b.)].

Proposition 1.5.10. [D, Proposition 2.7] Let R, I, P, P1, P2 be as in Lemma 1.5.8. If

I ⊆ P , then (R ./ I)Pi
∼= RP ./ IP for i = 1, 2. If I * P , then (R ./ I)Pi

∼= RP for i = 1, 2.

We will expand on Proposition 1.5.10 later, when we will need a more general version

in the study of flat epimorphisms (see Proposition 4.2.9).
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Chapter 2: Preliminary Results

2.1 Basic Lemmas

We will use the present chapter as storage for many lemmas that will be used in this

manuscript, in particular those that will be employed multiple times. No theorems will be

presented in this chapter, but each of the lemmas will be utilized at some further point in

the document.

Before examining constructions of bowtie rings from existing rings in the next section,

we present the following lemma to ensure that these constructions will indeed be rings

themselves, and the subsequent lemma to ensure that each such construction is unique.

Lemma 2.1.1. Let f : R → R′ be a ring homomorphism, and let K be a subset of

R′ with the same operations of addition and multiplication defined. Then R ./f K :=

{(r, f(r) + k)|r ∈ R, k ∈ K} is a ring if and only if K is an f(R)−subalgebra of R′.

Proof. If K is an f(R)−subalgebra of the ring R′, then the set described is simply the

bowtie extension R ./f K of R.

Conversely, define R ./f K := {(r, f(r) + k)|r ∈ R, k ∈ K}, and assume that this set

forms a ring. By assumption K is contained in R′. We know that R ./f K as defined here

contains the set {(0, k)|k ∈ K}, and basic calculations (noting the definition of the ring

R ./f K) show that this set is closed under addition and multiplication so that K itself

is closed under these operations. Since the ring R ./f K contains (0, 0), it follows that K

contains 0, and for any element k ∈ K, the element (0, k) must have an additive inverse in

R ./f K, say (s, f(s)+j), so that clearly f(s) = s = 0 and then j = −k lies inK by definition

of R ./f K. Finally, if r ∈ R, and k ∈ K, then (r, f(r))(0, k) = (0, f(r)k) ∈ R ./ K, which

implies that f(r)k ∈ K. It follows that K is an f(R)−subalgebra of R′.
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Corollary 2.1.2. Let R be a ring, and let K ⊆ R have the same operations of addition

and multiplication defined. Then R ./ K := {(r, r + k)|r ∈ R, k ∈ K} is a ring if and only

if K is an ideal of R.

Note that there was no requirement in these lemmas that K be a proper subset (or

proper ideal) or nonzero. The proofs are still valid, considering the rings R ./f 0 ∼= R and

R ./f R′ = R×R′ (or R ./ 0 ∼= R and R ./ R ∼= R×R, respectively in the “simple bowtie

ring” case).

Lemma 2.1.3. Let f : R→ R′ be a homomorphism of rings, and let H,K be f(R)−

subalgebras of R′. Then R ./f H = R ./f K if and only if H = K.

Proof. If H = K then clearly R ./f H = R ./f K. For the converse note that if there is an

element h ∈ H \K then (0, h) ∈ R ./f H \R ./f K.

We should point out that nothing in this lemma prevents two bowtie rings R ./f H,

R ./f K (for distinct H,K) from being isomorphic to one another. This is certainly possible,

but we are only concerned with whether or not the two bowtie rings are equal as sets.

The next lemma will be vital in our study of many properties of ring extensions in the

Integrality chapter. Also, a version concerning general bowtie rings will be presented and

used briefly in our study of integrally closed minimal extensions in the Flat Epimorphisms

chapter. For the sake of clarity, we present the lemma in the context of simple bowtie rings

here. In the proof, recall that if R ⊂ T is a ring extension, and Q ∈ Spec(T ), then the

contraction of Q to R is a prime ideal of R (that is, Q ∩R ∈ Spec(R)).

Lemma 2.1.4. Let R ⊂ T be a ring extension with ideals I, J , respectively, such that I ⊆ J .

Suppose that Q′ is a prime ideal of T ./ J . If Q′ has the form {(q, q + j)|q ∈ Q, j ∈ J} (resp.

{(q + j, q)|q ∈ Q, j ∈ J}) for some prime Q of T , then Q′ ∩ (R ./ I) =
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{(p, p+ i)|p ∈ Q ∩R, i ∈ I} (resp. {(p+ i, p)|p ∈ Q ∩R, i ∈ I}). Thus, Q′ and Q′∩(R ./ I)

can be written in the same form (in the sense of Lemma 1.5.8).

Proof. First consider the case Q′ = {(q, q + j)|q ∈ Q, j ∈ J}. Let P ′ =

{(p, p+ i)|p ∈ Q ∩R, i ∈ I}. Then P ′ is a prime ideal in R ./ I by Lemma 1.5.8 and clearly

P ′ ⊆ Q′. Thus P ′ ⊆ Q′ ∩ (R ./ I).

For the reverse inclusion, let (q, q+j) ∈ Q′. If (q, q+j) ∈ R ./ I as well, then this element

must have the form (r, r + i) for an r ∈ R and an i ∈ I. Then since (q, q + j) = (r, r + i),

clearly we must have r = q. It follows that q ∈ R, so that q ∈ Q ∩ R. Further, since

(q, q + j) = (r, r + i) = (q, q + i) ∈ P ′, we have the reverse inclusion that we desired.

Next we consider the only other possible case (by Lemma 1.5.8), viz., Q′ =

{(q + j, q)|q ∈ Q, j ∈ J}. Let P ′ = {(p+ i, p)|p ∈ Q ∩R, i ∈ I} As before we see that P ′ ⊆

Q′ ∩ (R ./ I).

For the reverse inclusion, let (q + j, q) ∈ Q′. If (q + j, q) ∈ R ./ I ⊆ R×R as well, then

q ∈ R so that q ∈ Q ∩ R. Further, by definition of R ./ I, the difference (q + j) − q = j

must be an element of I. Therefore (q + j, q) ∈ P ′, and our reverse inclusion follows.

2.2 Constructions and Decompositions

In this section we will examine sums, composites, and intersections of bowtie rings; these

lemmas will be particularly useful later in our study of intermediate rings. For a few small

immediate applications, we consider when arbitrary rings can be obtained by performing

one of these operations on a finite collection of non-trivial simple bowtie rings. By a non-

trivial simple bowtie ring, we mean one of the form R ./ I with I 6= R a nonzero ideal of

R; the “nonzero” requirement in our decompositions is necessary, since if I = 0 we trivially

have that R ∼= R ./ I.

Lemma 2.2.1. Let R,S be subrings of some ambient ring A, and R′, S′ be subrings of some

ambient ring A′. Suppose further that R∩S and R′∩S′ are rings. Let f : R→ R′, g : S → S′
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be ring homomorphisms that agree on R ∩ S, let I be an f(R)−subalgebra of R′ and let J

be a g(S)−subalgebra of S′. Then (R ./f I)∩ (S ./g J) = (R∩S) ./f (I ∩J). In particular,

setting R = S and R′ = S′, then (R ./f I) ∩ (R ./f J) = R ./f (I ∩ J).

Proof. We easily note that (R ./f I) ∩ (S ./g J) = {(r, f(r) + i)|r ∈ R, i ∈ I}∩

{(s, g(s) + j)|s ∈ S, j ∈ J} = {(t, f(t) + k)|t ∈ R ∩ S, k ∈ I ∩ J} = (R ∩ S) ./f (I ∩ J).

Corollary 2.2.2. Every ring can be written (isomorphically) as the intersection of two

nontrivial simple bowtie rings.

Proof. Let R be any ring and let X,Y be two distinct indeterminates over R. Note that

R[X] and R[Y ] are subrings of the ambient ring R[X,Y ]. Since R[X] contains no multiples

of Y (and R[Y ] contains no multiples of X), it follows that the only elements shared by

the subrings R[X] and R[Y ] are the constant terms, i.e., R[X] ∩ R[Y ] = R. Similarly, the

ideal generated by X in R[X] contains no Y terms (even though the ideal generated by X

in R[X,Y ] does), and the ideal Y R[Y ] contains no X terms; hence XR[X] ∩ Y R[Y ] = 0.

Now set S := R[X] ./ XR[X] and S′ := R[Y ] ./ Y R[Y ], and note that these are both

contained as subrings of the ambient ring R[X,Y ] ./ (X,Y )R[X,Y ]. Then by Lemma 2.2.1,

S ∩ S′ = (R[X] ∩R[Y ]) ./ XR[X] ∩ Y R[Y ] = R ./ 0 ∼= R.

Corollary 2.2.3. Let R be a Noetherian ring. Then any simple bowtie ring R ./ I can be

written as the finite intersection of simple bowtie extensions R ./ P1, R ./ P2, ..., R ./ Pn

of R where the Pi are primary ideals of R. In particular, any Noetherian ring R in which

0 is not primary can be represented as (an isomorphic copy of) the finite intersection of

nontrivial simple bowtie extensions of R.

Proof. Allowing the possibility that Pi = 0 or Pi = I for the primary ideals Pi, the first

statement follows easily from the Lasker-Noether Theorem and Lemma 2.2.1. For the second
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statement, let P1 ∩ · · · ∩ Pn be a primary decomposition for 0. Then R ∼= R ./ 0 = R ./

P1 ∩ · · · ∩R ./ Pn.

Corollary 2.2.4. No domain R can be written (isomorphically) as a finite intersection of

nontrivial simple bowtie extensions of R.

Proof. Suppose that R ∼= (R ./ I1) ∩ · · · ∩ (R ./ In) for some nonzero ideals I1, ..., In of R.

Then by Lemmas 2.2.1 and 2.1.3, and the fact that R ∼= R ./ 0 we have that I1∩· · ·∩In = 0,

so that in particular, for any nonzero elements i1, ..., in of I1, ..., In, respectively, we have

the product i1 · · · in = 0. But since each of the elements ik was nonzero by assumption, this

contradicts R being a domain.

However, when we move to infinite intersections, we have the contrary result.

Proposition 2.2.5. Every Noetherian domain R that is not a field can be represented

(isomorphically) as an infinite intersection of nontrivial simple bowtie extensions of R.

Proof. Suppose that R is a Noetherian domain that is not a field, and let I be any nonzero

ideal of R. Note that I is not nilpotent since R is a domain. Thus for each natural

number n, R ./ In is a nontrivial bowtie extension of R. Clearly the proof of Lemma

2.2.1 extends to infinite intersections. Then we have by the Krull Intersection Theorem,⋂
(R ./ In) = R ./

⋂
In = R ./ 0 ∼= R.

The proof of the following lemma is straightforward, and similar to that of Lemma 2.2.1.

This lemma will become useful when we study lattices of subrings in the following chapter.

Lemma 2.2.6. Let f : R→ R′ be a ring homomorphism, and let I, J be f(R)−subalgebras

of R′. Then (R ./f I) + (R ./f J) = R ./f (I + J) (where the first sum is taken in R×R).

Recall that by the composite of two subrings R,S of some ring A, we mean the subring

RS := {
∑n

i=1 risi|ri ∈ R, si ∈ S, n ∈ N} of A.
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Lemma 2.2.7. Let I, J be ideals of rings R,S, respectively. Assume that the composite

RS exists and that the sum SI + IJ + RJ exists (as an RS−algebra). Then (R ./ I)(S ./

J) = RS ./ (SI + IJ + RJ). In particular, if I, J are ideals of the same ring R, then

(R ./ I)(R ./ J) = R ./ (I + J).

Proof. To simplify notation we will not write the index terms on finite sums in this proof.

Any element of (R ./ I)(S ./ J) can be written as

∑
(rk, rk + ik)(sk, sk + jk) = (

∑
(rksk),

∑
(rksk + rkjk + skik + ikjk)) =

(
∑

rksk,
∑

rksk +
∑

rkjk +
∑

ikjk +
∑

skik),

whence (R ./ I)(S ./ J) ⊆ RS ./ (SI + IJ +RJ).

For the reverse inclusion, let (
∑
rksk,

∑
rksk +

∑
shih +

∑
iljl +

∑
rtjt)

be an arbitrary element of RS ./ (SI + IJ +RJ). This element can be

rewritten as
∑

(rk, rk)(sk, sk) +
∑

(0, ih)(sh, sh) +
∑

(0, il)(0, jl) +
∑

(rt, rt)(0, jt),

so we see that it lies in (R ./ I)(S ./ J), as (rk, rk), (0, ih), (0, il), (rt, rt) ∈ R ./ I and

(sk, sk), (sh, sh), (0, jl), (0, jt) ∈ S ./ J .

Corollary 2.2.8. Every finite composite of nontrivial simple bowtie extensions of a quasilo-

cal ring (R,m) can be written as a single nontrivial simple bowtie extension of R.

Proof. For any proper ideals I1, ..., In of R, we have (R ./ I1) · · · (R ./ In) = R ./ (I1 +

· · · + In). Since all of the Ik are nonzero by assumption, clearly their sum is nonzero as

well, and since I1 + · · ·+ In ⊆ m, we know that the sum of these ideals is not all of R (thus

the bowtie ring is nontrivial).

16



Corollary 2.2.9. No domain R can be written (isomorphically) as a finite composite of

nontrivial simple bowtie extensions of R.

Proof. Suppose that R could be written as the finite composite of nontrivial simple bowtie

extensions of R. Then, as in the first corollary, R can be written (isomorphically) as a

simple bowtie ring R ./ I for some (now possibly improper) ideal I of R. It follows from

our assumption (and the proof of Lemma 2.2.7) that I is nontrivial, say 0 6= i ∈ I. Then R

is not a domain, since it contains the nonzero elements (0, i), (i, 0), whose product is zero.

Note that if M,N are comaximal ideals of a ring R (i.e., M+N = R) then (R ./ M)(R ./

N) = R ./ (M +N) = R ./ R = R × R. However if (R,m) is quasilocal, then for any two

proper ideals I, J of R, we see that (R ./ I)(R ./ J) = R ./ (I + J) ⊆ R ./ m ⊂ R × R.

Since any two distinct maximal ideals are comaximal, we now have the following:

Corollary 2.2.10. Let R be a ring. Then R × R can be written as a finite composite of

nontrivial simple bowtie extensions of R if and only if R is not quasilocal.
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Chapter 3: Intermediate Rings and Minimal Ring Extensions

3.1 Introduction and Definitions

Given an extension of bowtie rings R ./f I ⊂ T ./f J (in the sense of Remark 1.4.1) we wish

to investigate the intermediate rings of this extension. In this chapter we will determine

the possible forms of such rings, and study the cardinality of existing chains of intermediate

rings. We will also determine under what conditions the extension R ./f I ⊂ T ./f J is

minimal.

Given a ring extension R ⊆ T we will adopt the notation [R, T ] for the set (partially

ordered by inclusion) of all rings S satisfying R ⊆ S ⊆ T (as unital subrings). Similarly,

for two R−subalgebras I ⊆ J of an R−algebra A, we will define [I, J ] as the set of all

R−subalgebras K of A satisfying I ⊆ K ⊆ J (naturally, if R = A then I, J are ideals of A

and [I, J ] refers to all the ideals K of A with I ⊆ K ⊆ J).

As in [GH], we will call a ring extension R ⊂ S a ∆−extension if for any two intermediate

rings R1, R2 ∈ [R,S], the sum R1 + R2 is a subring of S. We will follow [G] in defining a

ring extension R ⊆ T as a λ−extension if the set [R, T ] is linearly ordered (by inclusion).

Note that every λ−extension R ⊂ T is also a ∆−extension, since any two intermediate

rings A,B are comparable, say A ⊆ B, so their sum A+ B = B is a ring. For an example

of a ∆−extension that is not a λ−extension, see Example 3.2.9. A ring whose ideals are

linearly ordered by inclusion is called a chained ring (thus a chained ring with no nonzero

zero-divisors is a valuation domain). An extension R ⊂ T satisfies FIP (or the finitely many

intermediate algebras property) if [R, T ] is a finite set and satisfies FCP (or the finite chain

property) if every chain of intermediate rings is finite. Clearly any extension satisfying FIP

must satisfy FCP as well.
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3.2 Intermediate Rings

We begin by noting the exact form of any intermediate ring in the set [R ./f I,R ./f J ].

In particular we will prove that not only is every simple bowtie ring an element of the set

[R∆, R×R], but every element of this set is a simple bowtie ring. Thus the set of all simple

bowtie extensions of a ring R is exactly the set of all rings between R (embedded along the

diagonal) and R × R. The proof is very similar to an argument in [D,2 Remark 2.9] that

every R−subalgebra of an idealization RnE has the form RnE′ for some R−submodule

E′ of the R−module E.

Lemma 3.2.1. Let f : R→ R′ be a ring homomorphism, and let I ⊂ J be f(R)−subalgebras

of R′. If S is a ring with R ./f I ⊂ S ⊂ R ./f J , then S = R ./f K for some

f(R)−subalgebra K of R′ with I ⊂ K ⊂ J .

Proof. Fix an intermediate ring R ./f I ⊂ S ⊂ R ./f J . Note that each element

of S has the form (r, f(r) + j) for some r ∈ R, j ∈ J . Now define the set K :=

{j ∈ J |∃r ∈ R with (r, f(r) + j) ∈ S}. We claim S = R ./f K := {(r, f(r) + k)|k ∈ K}.

Given (r, f(r) + k) ∈ R ./f K then for some r′ ∈ R, (r′, f(r′) + k) ∈ S. Note that

(r′, f(r′)) ∈ R ./f I ⊂ S so we have that (0, k) ∈ S. Further, (r, f(r)) ∈ S so that

(r, f(r) + k) ∈ S; thus R ./f K ⊆ S. If (r, f(r) + j) ∈ S, then j ∈ K by definition of

K. It follows that S ⊆ R ./f K so that these sets are equal. Now the fact that K is an

f(R)−subalgebra of R′ follows from Lemma 2.1.1. Finally, the inclusions I ⊂ K ⊂ J follow

from the definition of S and the fact that R ./f I ⊂ S = R ./f K ⊂ R ./f J .

Let f : R → R′ be a homomorphism of rings. For any f(R)−subalgebra I of R′ the

bowtie ring R ./f I lies in [Γ(f), R × R′] by construction. Since Γ(f) = R ./f 0 and

R×R′ = R ./f R′, the lemma tells us that [Γ(f), R×R′] only consists of such rings. Thus

we have the following.
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Corollary 3.2.2. Let f : R→ R′ be a ring homomorphism. Then the set of all rings R ./f I

for I an (possibly trivial or improper) f(R)−subalgebra of R′ is equal to [Γ(f), R×R′]. In

particular the set of all simple bowtie rings R ./ I (for a possibly trivial or improper ideal I

of R) is equal to [R∆, R×R].

Theorem 3.2.3. Let f : R→ R′ be a ring homomorphism, and let I ⊂ J be f(R)−

subalgebras of R′. Then there is a one-to-one, order-preserving correspondence mapping the

set [R ./f I,R ./f J ] onto the set [I, J ], given by the map R ./f K 7→ K.

Proof. By Lemma 2.1.3 the given map is well-defined and injective. From Lemma 3.2.1 the

map preserves order. Finally, surjectivity is obvious since R ./f K is a ring between R ./f I

and R ./f J for any f(R)−subalgebra K between I and J .

In particular, if I ⊂ J are ideals of a ring R, then there is a one-to-one, order-preserving

correspondence between the rings in [R ./ I,R ./ J ] and the ideals in [I, J ]. This conse-

quence has in fact already been presented in a noncommutative context in [DM, Lemma

2.4], but only in the special case where I = 0.

We record a few more consequences together in the following corollary. As these indi-

vidual results will not be much use to us, the main purpose of this corollary is to note that

our Theorem 3.2.3 in fact generalizes some other recently presented results (see Corollary

3.5.4 and the comments preceding it).

Corollary 3.2.4. Let f : R → R′ be a homomorphism of rings, and let I ⊆ J be

f(R)−subalgebras of R′. Identify R with Γ(f) := R ./f 0(∼= R). Then

• R ⊂ R ./f R′ has FCP if and only if every chain of f(R)−subalgebras of R′ is finite.

• R ⊂ R ./f I has FIP if and only if I has only finitely many f(R)−subalgebras.

• R ⊂ R ./f I has FCP if and only if every chain of f(R)−subalgebras of I is finite.
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• R ./f I ⊂ R ./f J has FIP if and only if the f(R)−algebra J/I has only finitely many

f(R)−subalgebras.

• R ./f I ⊂ R ./f J has FCP if and only if every chain of f(R)−subalgebras of the

f(R)−algebra J/I is finite.

Proof. The first three statements are immediate. For the remaining two statements, note

that the set of f(R)−subalgebras of J/I is the set of f(R)−algebras of the form K/I for

an intermediate f(R)−algebra I ⊆ K ⊆ J of R.

Corollary 3.2.5. Let f : R → R′ be a ring homomorphism, and let I ⊂ J be f(R)−

subalgebras of R′. Then R ./f I ⊂ R ./f J is a minimal ring extension if and only if J/I

is a simple f(R)−submodule of R′/I.

Corollary 3.2.6. Given two ideals I ⊂ J of a ring R, the extension R ./ I ⊂ R ./ J is a

∆−extension. Thus for any ring R, the extension R∆ ⊂ R×R is a ∆−extension.

Proof. By Lemma 3.2.1, every intermediate ring in [R ./ I,R ./ J ] is a bowtie ring of the

form R ./ K for some ideal K of R. By Lemma 2.2.6 the sum of any two of these is again

a ring.

The last statement is now immediate, setting I = 0, J = R and recalling that R∆ =

R ./ 0 and R×R = R ./ R.

As in [G] we will refer to an integral domain R as a λ−domain if R ⊆ Frac(R) is a

λ−extension.

Corollary 3.2.7. Let R be a ring. Then R is a chained ring if and only if R ./ I ⊂ R ./ J

is a λ−extension for all ideals I ⊂ J of R. If R is a domain, then these conditions are

equivalent to R being a λ−domain.
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Proof. The first claim follows directly from Theorem 3.2.3. For the final statement, note

that any chained ring that is a domain is a valuation domain, which is integrally closed by

[K, Theorem 50]. The statement now follows from [G, Corollary 1.5].

We note that the following corollary to Corollary 3.2.7 was also proved via different

methods in [G, Corollary 2.15(a)].

Corollary 3.2.8. Let R be a ring. Then R∆ ⊂ R×R is a λ−extension if and only if R is

a chained ring.

Example 3.2.9. In light of Corollaries 3.2.6-3.2.8, we can now easily give an example of a

∆−extension that is not a λ−extension. Simply pick any non-chained ring R (for instance

R = Z), and take the extension R∆ ⊂ R×R.

For an example involving nontrivial simple bowtie rings, set R = Q[X,Y ], I = (XY ),

J = (X,Y ). Then R ./ I ⊂ R ./ J is a ∆−extension. However it is not a λ−extension,

since by Theorem 3.2.3 the set [R ./ I,R ./ J ] contains the incomparable rings R ./ (X)

and R ./ (Y ).

In the following proof recall that every Artinian ring is also necessarily Noetherian (cf.

[M, Theorem 3.2]).

Corollary 3.2.10. Let R be a ring. Then R is Artinian if and only if R ./ I ⊂ R ./ J

satisfies FCP for all ideals I ⊂ J of R.

Proof. We prove each direction via contrapositive. Suppose there are two ideals I ⊂ J of

R such that the ring extension R ./ I ⊂ R ./ J does not satisfy FCP. Then there is an

infinite chain (which we can harmlessly assume is countable) of rings R ./ I ⊂ · · · ⊂ S−1 ⊂

S0 ⊂ S1 ⊂ · · · ⊂ R ./ J . By (a simple iteration of) Lemma 3.2.1, each Si has the form

R ./ Ki for an ideal Ki of R, with Ki ⊂ Ki+1 ⊂ Ki+2 · · · . Fix the intermediate ring S0. By

assumption at least one of the chains of rings S0 ⊃ S−1 ⊃ S−2 · · · or S0 ⊂ S1 ⊂ S2 · · · does

not terminate. In the first case we would have that K0 ⊃ K−1 ⊃ K−2 · · · is a descending

chain of ideals that does not terminate, giving that R is not Artinian. In the second case
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the ascending chain of ideals K0 ⊂ K1 ⊂ K2 · · · does not terminate, giving that R is not

Noetherian and so not Artinian either.

For the converse, assume that R is not Artinian and let I0 ⊃ I1 ⊃ I2 ⊃ · · · be a

descending chain of ideals that does not terminate. Set J = I0 and I =
⋂
Ik. Then

R ./ I ⊂ R ./ J does not satisfy FCP since the within this extension lies the chain of

intermediate rings · · · ⊂ R ./ I2 ⊂ R ./ I1 ⊂ R ./ I0.

We will say that a ring extension R ⊂ T has FACP (or the finite ascending chain

property), if every ascending chain of intermediate rings R ⊂ S1 ⊂ S1 ⊂ S3 ⊂ · · · with each

Si strictly contained in T has a maximal element. We will analogously define FDCP (or

the finite descending chain property) as each descending chain T ⊃ S1 ⊃ S2 ⊃ S3 ⊃ · · ·

containing a minimal element (now assuming R is strictly contained in each Si). The

Artinian part of this corollary follows easily by a similar proof to Corollary 3.2.10 above

(by trimming some unnecessary pieces); the Noetherian part follows via similarly methods,

replacing the intersection in the last paragraph, of course, with a union.

Corollary 3.2.11. Let R be a ring. Then R is Artinian (resp., Noetherian) if and only if

R ./ I ⊂ R ./ J satisfies FDCP (resp., FACP) for all ideals I ⊂ J of R.

It is known that the ideals of a Prufer domain form a distributive lattice (cf. [G2, Theo-

rem 25.2, p. 310]). A ring- possibly not a domain- with this property is called an arithmetical

ring. With this we can now extend Theorem 3.2.3 from a one-to-one correspondence to a

lattice isomorphism.

Theorem 3.2.12. Let I ⊂ J be ideals of an arithmetical ring R. Then the set of rings in

[R ./ I,R ./ J ] forms a distributive lattice, where the join of two rings S1, S2 is S1 ∨ S2 :=

S1 + S2. Moreover, there is a lattice isomorphism between the rings in [R ./ I,R ./ J ]

and the ideals in [I, J ] given by f(R ./ K) = K. Conversely, if such a lattice (and lattice

isomorphism) exists for every pair of ideals I ⊂ J in a ring R, then R must be arithmetical.
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Proof. Suppose that R is an arithmetical ring, so that its ideals form a distributive lattice,

where the join and meet of two ideals I1, I2 are defined as I1 + I2 and I1 ∩ I2, respectively.

By Lemma 3.2.1, every ring in [R ./ I,R ./ J ] can be written as R ./ K for some ideal K of

R, and by Lemmas 2.2.1, 2.2.7, and 2.2.6 we conclude that the rings in [R ./ I,R ./ J ] form

a lattice (where the join of two subrings R ./ H,R ./ K of R ./ J is the smallest subring

containing them, namely the composite (R ./ H)(R ./ K) = R ./ (H+K) = R ./ H+R ./

K). This lattice is distributive since for any ideals H,K,L ∈ [I, J ] of the arithmetical ring

R we have

(R ./ H) ∩ (R ./ K +R ./ L) = (R ./ H) ∩ (R ./ (K + L)) = R ./ (H ∩ (K + L)) =

R ./ ((H ∩K) + (H ∩ L)) = R ./ (H ∩K) +R ./ (H ∩ L) =

(R ./ H) ∩ (R ./ K) + (R ./ H) ∩ (R ./ L).

Now define the map f : [R ./ I,R ./ J ]→ [I, J ] by f(R ./ K) = K. By Theorem 3.2.3 this

map is bijective and preserves inclusion. We now note that it also preserves the minimum

lattice element, as f(R ./ I) = I, and the maximum lattice element, as f(R ./ J) = J . We

know by Lemma 2.2.1 that meets are preserved, and it follows by Lemma 2.2.7 that joins

are preserved (recall that H +K is the smallest ideal containing the ideals H, K of a given

ring, and thus (in an arithmetical ring) is the join of H and K in the lattice of ideals of the

ring). Therefore f is a lattice isomorphism.

For the final statement, suppose that R is not arithmetical, and thus there exist ideals

H,K,L of R where H ∩ (K + L) 6= (H ∩K) + (H ∩ L). Then, following similar reasoning

as above (and recalling Lemma 2.1.3), we see that

(R ./ H) ∩ (R ./ K +R ./ L) = R ./ (H ∩ (K + L)) 6=

R ./ ((H ∩K) + (H ∩ L)) = (R ./ H) ∩ (R ./ K) + (R ./ H) ∩ (R ./ L),
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so that the rings in [R ./ 0, R ./ (H +K + L)] do not form a distributive lattice, and so in

particular, constructing the described lattice isomorphism is impossible.

Next we want to investigate extensions of bowtie rings where the f(R)−algebra J (rather

than the ring R) is kept fixed.

Lemma 3.2.13. Let R ⊂ T be an extension of rings, let f : T → T ′ be a ring homomor-

phism, and let J be an f(T )−subalgebra of T ′. If R ./f J ⊂ A ⊂ T ./f J for some ring A,

then A has the form A = S ./f J for some ring S with R ⊂ S ⊂ T .

Proof. Elements of A naturally look like (t, f(t) + j) where t ∈ T and j ∈ J . Let S =

{t ∈ T |∃j ∈ J with (t, f(t) + j) ∈ A}. Clearly R ⊆ S ⊆ T , and assuming S is a ring we

claim that A = S ./f J . Say (t, f(t) + j) ∈ A. Then t ∈ S by definition, so it follows

that A ⊆ S ./f J . Now let (s, f(s) + j) ∈ S ./f J . Then there exists a j′ ∈ J such that

(s, f(s) + j′) ∈ A. Since A (containing R ./f J) also contains the set {(0, j)|j ∈ J} we have

that (s, f(s) + j) = (s, f(s) + j′) + (0, j)− (0, j′) ∈ A. Thus A = S ./f J .

To finish the proof, we still need to show that S is a ring. Note that 0 ∈ S since R ⊆ S

and that S contains the common 1 to R and T . Let x, y ∈ S. Then (x, f(x) + i) ∈ A and

(y, f(y) + j) ∈ A for some elements i, j ∈ J . Since A is a ring, (x − y, f(x − y) + i − j) =

(x, f(x)+i)−(y, f(y)+j) ∈ A. Then since i−j ∈ J , this gives us x−y ∈ S by definition of S.

Similarly, we have the product (x, f(x)+i)(y, f(y)+j) = (xy, f(xy)+f(x)j+f(y)i+ij) ∈ A

and f(x)j + f(y)i+ ij is in J (since J is an f(R)−subalgebra of T ), so that xy ∈ S, again

by definition of S. It follows that S is a ring.

Finally, note that the inclusions R ⊂ S ⊂ T must be strict, since otherwise we would

have that A = R ./f J or A = T ./f J .

Theorem 3.2.14. Let R ⊂ T be a ring extension, let f : T → T ′ be a homomorphism of

rings, and let J be an f(T )−subalgebra of T . Then there is an order-isomorphism between
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the set [R ./f J, T ./f J ] and the set [R, T ], given by the map S ./f J 7→ S.

Corollary 3.2.15. Let R ⊂ T be a ring extension, let f : T → T ′ be a homomorphism of

rings, and let J be an f(T )−subalgebra of T . Then R ./f J ⊂ T ./f J is a minimal ring

extension if and only if R ⊂ T is a minimal extension.

Corollary 3.2.16. Let R ⊂ T be a ring extension, let f : T → T ′ be a homomorphism of

rings, and let J be an f(T )−subalgebra of T . Then the extension R ./f J ⊆ T ./f J has

FIP (resp., FCP) if and only if the extension R ⊆ T has FIP (resp., FCP).

Corollary 3.2.17. Let R ⊂ T be a ring extension, let f : T → T ′ be a homomorphism of

rings, and let J be an f(T )−subalgebra of T . Then R ./f J ⊂ T ./f J is a λ−extension if

and only if R ⊂ T is a λ−extension.

Proposition 3.2.18. Let R ⊂ T be a ring extension, let f : T → T ′ be a homomorphism

of rings, and let J be an f(T )−subalgebra of T . Then R ./f J ⊂ T ./f J is a ∆−extension

if and only if R ⊂ T is a ∆−extension.

Proof. Assume R ⊂ T is a ∆−extension. Let A1, A2 ∈ [R ./f J, T ./f J ]. By Lemma 4.5

we can write A1 = S1 ./
f J and A2 = S2 ./

f J for some rings S1, S2 ∈ [R, T ]. Note that

A1 +A2 = {(s1, f(s1) + j1)|s1 ∈ S1, j1 ∈ J}+ {(s2, f(s2) + j2)|s2 ∈ S2, j2 ∈ J} =

{(s1 + s2, f(s1) + f(s2) + j1 + j2)|s1 ∈ S1, s2 ∈ S2, j1, j2 ∈ J} =

{(s1 + s2, f(s1 + s2) + j)|s1 ∈ S1, s2 ∈ S2, j ∈ J} ,

which is a ring, since S1 + S2 is a ring by assumption, and since J is an f(T )−subalgebra

of S1 + S2 (being an f(T )−subalgebra in both S1 and S2).

Conversely, assume R ./f J ⊂ T ./f J is a ∆−extension. If R ⊂ T is not a ∆−extension

then we can find S1, S2 ∈ [R, T ] such that S1 + S2 is not a ring, that is, we can find

s1, s
′
1 ∈ S1, s2, s

′
2 ∈ S2 such that (s1 + s2)(s′1 + s2′) /∈ S1 + S2. Note as above that J is an
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f(T )−subalgebra of S1 +S2. But then (s1 +s2, f(s1 +s2)), (s′1 +s′2, f(s′1 +s′2)) are elements

of the set S1 ./
f J + S2 ./

f J whose product is not in this set, so that it cannot be a ring.

Since S1 ./
f J, S2 ./

f J ∈ [R ./f J, T ./f J ], this contradicts that R ./f J ⊂ T ./f J is a

∆−extension.

Some properties involving intermediate rings descend easily (from the extension R ./f

I ⊂ T ./f J to the extension R ⊆ T ) even while reverse implication may not hold. We will

show the “descent” for FCP, FIP, and λ−extensions in the following two propositions. The

“ascent” direction does not hold in either case, as we will show in the next section.

Proposition 3.2.19. Let R ⊆ T be a ring extension, f : T → T ′ a ring homomorphism, I

an f(R)−subalgebra of T ′, and J an f(T )−subalgebra of T ′ with I ⊆ J . If R ./f I ⊂ T ./f J

has FCP (resp. FIP), then so does R ⊆ T .

Proof. For any ring S with R ⊆ S ⊆ T we note that S ./f J is a ring by Corollary 2.1.2.

Further, R ./f I ⊆ S ./f J ⊆ T ./f J . Thus there is a surjection from the rings in

[R ./f I, T ./f J ] to the rings in [R, T ] (by projecting to the first coordinate). This proves

the statement for FIP. To prove FCP simply note that the given surjection preserves order

(by inclusion).

Proposition 3.2.20. Let R ⊆ T be a ring extension, f : T → T ′ a ring homomorphism, I

an f(R)−subalgebra of T ′, and J an f(T )−subalgebra of T ′ with I ⊆ J . If R ./f I ⊂ T ./f J

is a λ−extension, then so is R ⊂ T .

Proof. Suppose for two rings S1, S2 that R ⊂ S1 ⊂ T and R ⊂ S2 ⊂ T with S1, S2

incomparable. We will harmlessly abuse notation and write f for f restricted to S1 (resp.

S2). Then R ./f I ⊂ S1 ./
f J ⊂ T ./ J and R ./f I ⊂ S2 ./

f J ⊂ T ./ J . By assumption,

we can find an s1 ∈ S1 \ S2 and an s2 ∈ S2 \ S1. Then (s1, f(s1)) ∈ S1 ./ J \ S2 ./ J
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and (s2, f(s2)) ∈ S2 ./ J \ S1 ./ J , giving that these two rings are incomparable in [R ./f

I, T ./f J ], so R ./f I ⊂ T ./f J is not a λ−extension.

3.3 Counterexamples

In this section we answer certain questions that may arise due to the results of the previous

section. For example, given a homomorphism f : R → R′ with f(R)−submodules I ⊆ J

of R′, if J/I is a simple R′−module must R ./f I ⊂ R ./f J be minimal? Must it at least

satisfy FCP (or FIP)? Given an extension of simple bowtie rings R ./ I ⊂ T ./ J (with

ideals I ⊆ J of the rings R ⊆ T, respectively) will every intermediate ring be a bowtie ring

(in particular, one of the form S ./ K where R ⊆ S ⊆ T and I ⊆ K ⊆ J)? Also, do the

propositions at the end of the preceding section have affirmative converses? Each of these

questions is answered in the negative, and we provide appropriate counterexamples in each

case (Examples 3.3.5, 3.3.5 (again), 3.3.3 (also 3.3.4), and 3.3.1, respectively).

Example 3.3.1. The converse does not hold for either of the two propositions concluding

the previous section. To see this in the first proposition, let R = T be a non-Artinian ring

and note by Corollary 3.2.10 that R ./ 0 ⊂ R ./ R does not satisfy FCP (or FIP), even

though R ⊆ T = R does trivially. For the latter proposition let R = T be any non-chained

ring and note that R ./ 0 ⊂ R ./ R is not a λ−extension (Corollary 3.2.8) even though

R ⊆ T = R is trivially.

In light of Lemma 3.2.1 and Lemma 3.2.13, it is tempting to assume that any interme-

diate ring between R ./f I ⊆ T ./f J (this extension constructed in the sense of Remark

1.4.1) is a bowtie ring, say S ./f K for some intermediate ring S ∈ [R, T ] and f(R)−algebra

K ∈ [I, J ]. The following proposition indicates a further necessary condition for this to be

true. The subsequent examples show that this condition does not always hold. Given a

ring homomorphism f : R → R′ and an f(R)−subalgebra I of R′, recall that R embeds
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into R ./f I via the diagonal Γ(f) := {(r, f(r))|r ∈ R} ∼= R. Given a subring S′ ⊆ R × R′

we use π1(S′) to denote the projection of S′ onto the first coordinate.

Proposition 3.3.2. Let R ⊆ T be a ring extension, f : T → T ′ a ring homomorphism, I

an f(R)−subalgebra of T ′, and J an f(T )−subalgebra of T ′ with I ⊆ J . Suppose S′ is a

ring with R ./f I ⊂ S′ ⊂ T ./f J . Then S′ = S ./f K for some ring S with R ⊆ S ⊆ T

and some f(S)−subalgebra K of T ′ with I ⊆ K ⊆ J if and only if S′ contains the diagonal

image (namely, Γ(f |S )) of π1(S′).

Proof. If S′ = S ./f K, then S′ contains the diagonal image of S by definition. Conversely,

set S := π1(S′) (so clearly R ⊆ S ⊆ T ) and suppose that S′ contains the diagonal image

S∆f
of S. Then S∆f

= S ./f 0 ⊆ S′ ⊆ S ./f J . If S′ = S ./f 0 or S′ = S ./f J we are done

(noting that S′ = S ./f 0 would force that I = 0, so the inclusion I ⊆ K ⊆ J holds). Thus

we may assume S∆f
= S ./f 0 ⊂ S′ ⊂ S ./f J and we are reduced to the case in Lemma

3.2.1, so that S′ = S ./f K for some f(S)−subalgebra K of T ′ with 0 ⊂ K ⊂ J . Finally,

since R ./f I ⊂ S′ = S ./f K we can see without much difficulty that I ⊆ K.

Example 3.3.3. We will use simple bowtie rings for this example. Let R = Z with ideal

I = 2Z, T = Z[X] with ideal J = (2, X). Note that R ./ I is a subring of T ./ J . We will

give an example of a ring in [R ./ I, T ./ J ] that is not of the (bowtie ring) form described

in Proposition 3.3.2.

Define S′ := {(n+ 2p(X), n+ 2k)|n, k ∈ Z, p(X) ∈ Z[X]}. Direct calculations show that

S′ is a ring. It is clear that R ./ I ⊂ S′. The ring T ./ J is the set of all pairs (f(X), g(X)) ∈

Z[X]× Z[X] where f(X) and g(X) differ by a polynomial with even constant term. Given

an element (n+ 2p(X), n+ 2k) ∈ S′, the coordinates differ by 2p(X)− 2k, which obviously

has even constant term. It follows that S′ is a subring of T ./ J , so S′ ∈ [R ./ I, T ./ J ].

Note however that S′ does not contain the diagonal image of π1(S′); for instance, 2X ∈

π1(S′), but S′ does not contain the element (2X, 2X). Thus S′ is not a bowtie extension
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of π1(S′); in particular by Proposition 3.3.2 S′ doesn’t have the form S ./ K for any

intermediate ring R ⊆ S ⊆ T and intermediate ideal I ⊆ K ⊆ J .

Notice in the previous example that if we reverse the two coordinates in S′ then the

construction can be viewed as a ring of the form S ./f K with R ⊆ S ⊆ T and I ⊆ K ⊆ J

where K is an f(R)−subalgebra of T (namely, with S = Z,K = 2Z[X], and f : Z→ Z[X,Y ]

the natural inclusion map). We now present an example where this is not possible.

Example 3.3.4. Consider the rings R = Z with ideal I = 2Z and T = Z[X,Y ] with

ideal J = (2, X, Y ). Then R ./ I ⊂ T ./ J is a ring extension. Now consider the set

S′ := {(n+ 2p(X), n+ 2q(Y ))|n ∈ Z, p(X) ∈ Z[X], q(Y ) ∈ Z[Y ]}. Then S′ is a ring, and

R ./ I ⊂ S′. Now T ./ J is the set of all polynomials (g(X,Y ), h(X,Y )) ∈ Z[X,Y ]

where g(X,Y ) and h(X,Y ) differ by a polynomial in Z[X,Y ] with even constant term.

Given any element (n+ 2p(X), n+ 2q(Y )) in S′, the two polynomials in this pair differ by

n + 2p(X) − n − 2q(Y ) = 2(p(X) − q(Y )), which is clearly a polynomial in Z[X,Y ] with

even constant term. It follows that S′ is a subring of T ./ J .

As in the previous example we can see that S′ cannot be represented in the form S ./f K

since π1(S′) does not embed into S′ along the diagonal. However, unlike in the previous

example π2(S′) does not embed into S′ along the diagonal either so that switching the

coordinates still does not produce a ring of the desired form S ./f K with R ⊆ S ⊆ T and

I ⊆ K ⊆ J .

Let f : R→ R′ be a ring homomorphism. Currently the most common construction of

a bowtie ring is to take an ideal of R′, say I, and construct the ring R ./f I. However, as

we have seen, many concepts generalize to when I is an f(R)−subalgebra of R′. (Again,

in this document we do not make the assumption that algebras and subalgebras necessarily

contain a unit element.) Further, in considering intermediate rings we are forced to take

such sets into account. Below we give some examples showing that some of the concepts

we have applied using algebras would not respond as well to ideals.
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Example 3.3.5. An example where J/I is a simple R′-module but R ./f I ⊂ R ./f J does

not satisfy FCP (or FIP), thus is not minimal.

Set R = Z and R′ = Q×Q×Q. Let I = {(q, 0, 0)|q ∈ Q} and J = {(q1, 0, q2)|q1, q2 ∈ Q}.

Then I, J are nonzero proper ideals of R′ with I ⊂ J . Let f : R → R′ be the natural

embedding n 7→ (n, n, n).

For each n ∈ N create the f(R)−subalgebra Hn := {((q, 0, c)|q ∈ Q, c ∈ 2nZ)} of R′.

Note that the Hn are not ideals in R′, though I ⊂ Hn ⊂ J . In fact, J/I ∼= Q is a

simple R′−module. However, now in [R ./f I,R ./f J ] we have the non-terminating

chain of intermediate rings · · ·R ./f H3 ⊂ R ./f H2 ⊂ R ./f H1. Thus the extension

R ./f I ⊂ R ./f J does not satisfy FCP (and consequently, does not satisfy FIP either).

In the following example the R′−module J/I is not simple. We present this as an

example of when the intermediate rings involved may or may not be constructed from an

ideal of R′. In fact, there are uncountably many intermediate rings of either type.

Example 3.3.6. Let R = Z and R′ =
∏

NQ. Define I = {(q, 0, 0, 0, ...)|q ∈ Q}, J =

{(q1, 0, q3, q4, ...)|qi ∈ Q} so I ⊂ J are ideals of R′. Let H = {(q, 0, z1, z2, ...)|q ∈ Q, zi ∈ Z}

and note H is not an ideal of R′. However, letting f : R → R′ be the natural inclusion

f(n) = (n, n, n, ...), we see that R ./f H is a ring and R ./f I ⊂ R ./f H ⊂ R ./f J .

More generally, fix any nonempty subset Γ of N\{1, 2}. Let H be the set of elements in

J whose entries are integers at every coordinate in Γ. Then once again, H is not an ideal of

R′ but R ./f H is a ring and R ./f I ⊂ R ./f H ⊂ R ./f J . Note that if we instead define

H as the set of elements in J whose entries are identically zero at every coordinate in Γ then

H is indeed an ideal of R′ with I ⊂ H ⊂ J (so that again R ./f I ⊂ R ./f H ⊂ R ./f J).

It follows that in the lattice of elements of [R ./f I,R ./f J ], we can find an (uncount-

ably) infinite number of intermediate rings R ./f H where H is an ideal, as well as an

(uncountably) infinite number of intermediate rings R ./f H where H is not.
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3.4 Minimal Ring Extensions

Minimal ring extensions have been subject to extensive study (cf. [CDL], [D2], [DS], [DS2],

and [FO]). Here we wish to explore minimal extensions involving bowtie rings in more detail.

In light of the “general bowtie ring” counterexamples that closed the previous section we

will mostly focus on extensions of simple bowtie rings for the present section.

We know that R ./ I ⊂ R ./ J will be minimal if J/I is a simple R−module (Corollary

3.2.5). We will give a few other equivalent conditions next. Recall that for a ring R and

an R−module E, the notation R n E refers to Nagata’s idealization of R with E, i.e. the

ring of elements (r, e) ∈ R×E under the usual addition but with multiplication defined by

(r, e)(s, f) = (rs, rf + se). Note that R embeds into R n E via the map r 7→ (r, 0) so we

may view R ⊆ Rn E as a ring extension.

Proposition 3.4.1. Let I ⊂ J be ideals of a ring R and let φ : R → R/I be the canonical

map. Define R∆f
:= {(r, φ(r))|r ∈ R} ∼= R. Then the following are equivalent.

1. R ./ I ⊂ R ./ J is a minimal ring extension.

2. R∆f ⊂ R ./φ (J/I) is a minimal ring extension.

3. R ⊂ Rn (J/I) is a minimal ring extension.

4. J/I is a simple R−module.

Proof. The equivalence of the third and fourth statement follows from [D2, Theorem 2.4].

The equivalence of the first and fourth statements follows from Corollary 3.2.5. Finally we

will show the equivalence of the second and fourth statements. First assume that J/I is a

simple R−module, and let R∆f ⊂ S ⊆ R ./φ (J/I) for some ring S. We will use r to denote

the canonical image of r ∈ R in R/I.

Take a (r, r+j) ∈ S \Γ(f), so in particular j is a nonzero element of J/I (i.e., j ∈ J \I).

Then (0, j) = (r, r + j)− (r, r) ∈ S and j generates J/I, so S =
{

(r, r + j)|r ∈ R, j ∈ J
}

=

R ./φ J/I. It follows that Γ(f) ⊂ R ./φ (J/I) is minimal.
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However, assuming that J/I is not simple, we could take a nonzero

R−submodule M ⊂ J/I (necessarily an ideal of R/I), so that Γ(f) ⊂ R ./φ M ⊂ R ./φ J/I

would give that the extension Γ(f) ⊂ R ./φ (J/I) is not minimal.

In the Intermediate Rings section of this chapter, we have seen two ways to obtain a

minimal extension as an extension of bowtie rings (Corollaries 3.2.5 and 3.2.15). By the

following proposition these are the only ways to do so.

Proposition 3.4.2. Let R ⊆ T be a ring extension, f : T → T ′ a ring homomorphism, I

an f(R)−subalgebra of T ′, and J an f(T )−subalgebra of T ′ with I ⊆ J . Then R ./f I ⊂

T ./f J is a minimal ring extension if and only if one of the following holds:

1. R = T and J/I is a simple f(T )−submodule of T ′.

2. R ⊂ T is a minimal ring extension and J = I.

Proof. The cases where R = T or I = J have already been handled, by Corollary 3.2.5

and Corollary 3.2.15, respectively. We wish to show that no other case is possible. But

the only remaining possibility to check is R ⊂ T being a minimal extension, and I ⊂ J

a strict inclusion with no f(R)−subalgebras of T lying between I and J . Since J is an

f(R)−subalgebra of T it is closed under multiplication by elements of T , in particular, by

elements of R. Consider the set R ./f J := {(r, f(r) + j)|r ∈ R, j ∈ J}. It is a quick check

to see that this set is a ring (cf. Lemma 2.1.1 and Corollary 2.1.2), and in fact a ring lying

strictly between R ./f I and T ./f J , so that the extension R ./f I ⊂ T ./f J is not

minimal.

Much study has been devoted to the classification of minimal extensions of certain types

of rings. One such classification is given in the following theorem (cf. [PP, pages 369-386]).

The subsequent results apply this theorem to extensions of bowtie rings.

33



Theorem 3.4.3. Let A ⊂ B be an integral ring extension. Then A ⊂ B is a minimal

ring extension if and only if there exists M ∈Max(A) such that one of the following three

conditions holds:

(a) inert case: M is a maximal ideal of B and A/M → B/M is a minimal field

extension;

(b) decomposed case: There exists q ∈ B \ A such that B = A[q], q2 − q ∈ M , and

Mq ⊆M ;

(c) ramified case: There exists q ∈ B \A such that B = A[q], q2 ∈M , and Mq ⊆M .

Furthermore, conditions (a)-(c) are mutually exclusive.

Proposition 3.4.4. Let R ⊂ T be an integral ring extension and J an ideal of T (so in

particular, R ./ J ⊂ T ./ J is an integral extension by the forthcoming Corollary 6.1.2).

Then the extension R ⊂ T is a minimal extension in the inert case (resp., the decomposed

case, ramified case) in the sense of Theorem 3.4.3 if and only if R ./ J ⊂ T ./ J is a

minimal extension of the same case.

Proof. Inert case: Suppose that R ⊂ T is a minimal extension of the inert case. Then

R ./ J ⊂ T ./ J is a minimal ring extension by Corollary 3.2.15. By assumption there is a

maximal ideal M ∈Max(R) such that M ∈Max(T ) and R/M → T/M is a minimal field

extension. Note that M ′ := {(m,m+ j)|m ∈M, j ∈ J} is a maximal ideal of both R ./ J

and T ./ J . Further, (R ./ J)/M ′ ∼= R/M and (T ./ J)/M ′ ∼= T/M , by [DFF, Proposition

2.1]. But this clearly implies that (R ./ J)/M ′ → (T ./ J)/M ′ is a minimal field extension,

so that R ./ J ⊂ T ./ J is a minimal extension of the inert case.

Conversely, suppose that R ./ J ⊂ T ./ J is a minimal extension of the inert case,

and let M ′ be a maximal ideal of T ./ J , with (R ./ J)/M ′ → (T ./ J)/M ′ a minimal

field extension. We note that the ideal M ′ has the form {(m,m+ j)|m ∈M, j ∈ J} or

{(m+ j,m)|m ∈M, j ∈ J} for some M ∈Max(R). In the first case we have that

(R ./ J)/M ′ =
R ./ J

M ./ J
∼= R/M
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by [DFF, Proposition 2.1]; the second case would follow by a similar homomorphism as

used in that proof. Since M ′ is a maximal ideal of T ./ J as well, it must have one of the

above forms for some N ∈ Max(T ). If it is of the first form, then clearly M = N . Other-

wise, we have two ways to write M ′, shown in the equation {(m,m+ j)|m ∈M, j ∈ J} =

{(n+ j, n)|n ∈ N, j ∈ J}. But setting the j to zero (in one side of the equation at a time),

it is not difficult to see that, again, M = N . In either case, we have that M ∈Max(T ) and

(T ./ J)/M ′ =
T ./ J

R ./ J
∼= T/M,

so the canonical map R/M 7→ T/M is just the assumed (minimal) field injection (R ./

J)/M ′ → (T ./ J)/M ′. It follows that R ⊂ T is a minimal extension of the inert case.

Decomposed case: Say R ⊂ T is a minimal extension of the decomposed case. As in the

inert case, R ./ J ⊂ T ./ J is a minimal extension by Corollary 3.2.15. Then there exists a

q ∈ T \R and an M ∈Max(R) with T = R[q], q2 − q ∈M , and Mq ⊆M . Set q′ = (q, q),

and M ′ = {(m,m+ j)|m ∈M, j ∈ J} ∈ Max(R ./ J). Note that q′ ∈ T ./ J \ R ./ J so

that T ./ J = R ./ J [q′] by minimality. Further, q′2−q′ = (q2−q, q2−q) ∈M ′, and M ′q′ =

{m′q′|m′ ∈M ′} = {(m,m+ j)(q, q)|m ∈M, j ∈ J} = {(mq,mq + iq)|m ∈M, j ∈ J} ⊆ M ′

since mq ∈M by assumption. It follows that R ./ J ⊂ T ./ J is a minimal extension of the

decomposed case.

Conversely, suppose that R ./ J ⊂ T ./ J is a minimal extension of the decomposed

case. Then there exists a (t, t + j) ∈ T ./ J \ R ./ J and an M ′ ∈ Max(R ./ J) with

T ./ J = R ./ J [(t, t + j)], (t, t + j)2 − (t, t + j) ∈ M ′ and M ′(t, t + j) ⊆ M ′. Recall that

M ′ must have the form {(m,m+ j)|m ∈M, j ∈ J} or {(m+ j,m)|m ∈M, j ∈ J} for some

M ∈Max(R). For now we will assume that M ′ is of the first form.

Note that R ⊂ T is a minimal ring extension (Corollary 3.2.15) and t ∈ T \ R, so we

must have T = R[t]. Further, since 2tj + j2 − j ∈ J (by definition of the ideal I), we see

that (t, t + j)2 − (t, t + j) = (t2 − t, t2 − t + 2tj + j2 − j) ∈ M ′, and so t2 − t ∈ M . Also,
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M ′(t, t + j) = {(mt, (m+ i)(t+ j))|m ∈M, i ∈ J} ⊆ M ′ by assumption, so that mt ∈ M

for all m ∈M ; that is Mt ⊆M .

Finally we consider the possibility that M ′ be of the second form. Rewrite our given

(t, t + j) as (u + i, u) where u = t + j and i = −j ∈ J . Then the remainder of the proof

for this case follows a symmetric argument to the one in the previous paragraph (noting- if

necessary- that the ring R ./ J could harmlessly be defined as {(r + j, r)|r ∈ R, j ∈ J}). It

follows that R ⊂ T is a minimal extension of the decomposed case.

Ramified case: This proof is essentially the same as the decomposed case, noting now that

q2 ∈M if and only if q′2 = (q2, q2) ∈M ′.

Remark 3.4.5. We know by Proposition 3.4.2 that any minimal extension of the form

T ./ J of a bowtie ring R ./ I has the form T ./ I (with R ⊂ T minimal) or R ./ J (where

J/I is a simple R−module). The first case is integral exactly when R ⊂ T is (this will be

shown in Corollary 6.1.2), and we can classify the extension R ./ I ⊂ T ./ I as in Proposition

3.4.4. The second case R ./ I ⊂ R ./ J is always integral, as we will see in Corollary 6.1.3,

so naturally we ask when it will be of the inert, decomposed, or ramified case. It turns out

that this extension will never be of the inert case. By [DFF, Proposition 2.6 (4)] we know

that any maximal ideal of R ./ I has the form M ′ = {(m,m+ i)|m ∈M, i ∈ I} for some

M ∈Max(R), and any maximal ideal of R ./ J has the form N ′ = {(n, n+ j)|n ∈ N, j ∈ J}

for some N ∈ Max(R). If these two sets are equal, then in particular the set of first

coordinates in M ′ is equal to the set of first coordinates in N ′ and it follows that M = N .

Then, since I 6= J , it is easy to see that M ′ 6= N ′. Thus no maximal ideal of R ./ I is a

maximal ideal of R ./ J , so the inert case is impossible.

Now we have that every minimal ring extension R ./ I ⊂ R ./ J is of the decomposed

case or the ramified case. Either of these cases is possible, and fairly easy to construct. For

instance if I = J2 6= J , then pick any j ∈ J \ I and it is clear that we can take (0, j) as our

element q in the ramified case. We can give an example of the decomposed case similarly.
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It is not difficult to construct ideals I ⊂ J of a ring R such that some j ∈ J \ I satisfies

j2− j ∈ I (and take (0, j) as our q in the decomposed case). For instance, consider I = 6Z,

J = 3Z in the ring R = Z. Then R ./ I ⊂ R ./ J is a minimal integral extension of the

decomposed case, with (for instance) q = (0, 3).

Proposition 3.4.6. Let R ./ I ⊂ R ./ J be a minimal extension of bowtie rings (which

is necessarily integral by the forthcoming Corollary 6.1.3). Following the terminology of

Theorem 3.4.3, this is an extension in the ramified case if and only if there exist r ∈ R, j ∈

J \ I,M ∈ Max(R) such that r2 ∈ M and 2rj + j2 ∈ I. Otherwise, it is an extension in

the decomposed case.

Proof. Suppose that such an r, j, and M exist, and consider the element q = (r, r + j) ∈

R ./ J \ R ./ I. Then R ./ J = (R ./ I)[q] by minimality. Further, q2 = (r2, r2 +

2rj + j2) is contained in the maximal ideal M ′ := {(m,m+ i)|m ∈M, i ∈ I} of R ./ I (cf.

[DFF, Proposition 2.6 (4)]). Note that M ′q = {(rm, rm+mj + ri+ ij)|m ∈M, i ∈ I} is

contained in M ′ (since M and I are ideals of R). Then by Theorem 3.4.3 it follows that

this is an extension in the ramified case.

Conversely, if R ./ I ⊂ R ./ J is a ramified extension, then by Theorem 3.4.3 and [DFF,

Proposition 2.6 (4)] there exists an M ∈ Max(R) and some (r, r + j) ∈ R ./ J \ R ./ I

such that R ./ J = (R ./ I)[(r, r + j)] and (r, r + j)2 ∈ M ′ := {(m,m+ i)|m ∈M, i ∈ I}.

Clearly we must have that j ∈ J \ I and since (r, r+ j)2 = (r2, r2 + 2rj+ j2) ∈M ′, we have

that r2 ∈M and 2rj + j2 ∈ I by definition of M ′.

Finally, if the extension R ./ I ⊂ R ./ J does not satisfy the above conditions (or

equivalently, is not an extension in the ramified case), then by Theorem 3.4.3 and Remark

3.4.5, it must be an extension in the decomposed case.
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3.5 A Note on Nagata’s Idealization

Let R be a ring, and E be an R−module. As we have seen, Nagata’s idealization is the ring

RnE := {(r, e)|r ∈ R, e ∈ E} where addition is defined as in the abelian group R⊕E and

multiplication is defined as (r, e)(s, f) = (rs, rf + se). If we define a trivial multiplication

on E (so ee′ = 0 for all e, e′ ∈ E), then the set R+E is a ring, and R embeds into this ring

in the obvious fashion. Let us denote this embedding by ι. With the trivial multipication

we see that E becomes an R−algebra (so an ι(R)−algebra). Further, it is easy to see that

the map R n E → R ./ι E given by (r, e) 7→ (r, ι(r) + e) is an isomorphism. Thus we

may view RnE as a general bowtie ring, R ./ι E, so that Nagata’s idealization becomes a

special case of many of the results of this chapter. We will record some of the more notable

results here.

The first order of business is to describe Lemma 3.2.1 and Theorem 3.2.3 in terms of

idealizations, a result which in turn extends [D2, Remark 2.9]. We note that the basic proof

concept in this cited remark is utilized in the proof of Lemma 3.2.1 from which much of this

chapter follows. The next theorem is easily proven by the same methods as for the general

bowtie ring case.

Theorem 3.5.1. Let R be a ring and let E ⊆ F be R−modules. Then every element of

[R n E,R n F ] has the form R n E′ for some R−module E′ with E ⊆ E′ ⊆ F . Further,

there is an order-isomorphism between the sets [RnE,RnF ] and [E,F ], given by the map

Rn E′ 7→ E′.

Corollary 3.5.2. Let R be a ring and let N ⊆ M be R−modules. Then R nN ⊂ R nM

is a minimal ring extension if and only if M/N is a simple R−module.

Corollary 3.5.3. Let R be a ring and let N ⊆ M be R−modules. Then R nN ⊂ R nM

is a ∆−extension.

Numerous related properties on idealizations were recently presented by Gabriel Picavet

and Martine Picavet-L’Hermitte. We list some of these results in the next corollary, noting
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that these follow as special cases of applications of Theorem 3.2.3 (namely, the results

recorded in Corollary 3.2.4). Given a ring R and an R−module M , we will use LR(M)

to denote the length of M (i.e., the number of strict inclusions in the longest chain of

submodules of M). For the following corollary, note that R ∼= R n 0. In the first assertion

of the corollary, note that every R−module lying between 0 and R (as sets) is an ideal of

R.

Corollary 3.5.4. Let R be a ring and N ⊂M be R−modules. Then

• R ⊂ RnR has FCP if and only if R is Artinian.

• R ⊂ RnM has FIP if and only if M has only finitely many submodules.

• R ⊂ RnM has FCP if and only if LR(M) <∞.

• RnN ⊂ RnM has FIP if and only if M/N has only finitely many submodules.

• RnN ⊂ RnM has FCP if and only if LR(M/N) <∞.

Proof. The first three statements are immediate. For the rest, note that the set of R−sub-

modules of M/N is the set of R−modules of the form N ′/N for an intermediate R−module

N ⊆ N ′ ⊆M .

Finally, we consider the analogous results to Lemma 3.2.13 and Theorem 3.2.14 in the

context of Nagata’s idealization. The proof uses the same process so we omit it for brevity.

Theorem 3.5.5. Let R ⊂ T be a ring extension and let M be a T−module. Then every

ring in [RnM,T nM ] has the form S nM for some ring S ∈ [R, T ]. Further, there is an

order-isomorphism from [RnM,T nM ] to [R, T ], given by the map S nM 7→ S.

Again we provide a list of relevant consequences in the specific case of idealizations.

These also all have analogues in Section 3.2 in the context of general bowtie rings.

Corollary 3.5.6. Let R ⊂ T be rings and M a T−module. Then
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• RnM ⊂ T nM is a minimal extension if and only if R ⊂ T is a minimal extension.

• RnM ⊂ T nM has FCP if and only if R ⊂ T has FCP.

• RnM ⊂ T nM has FIP if and only if R ⊂ T has FIP.

• RnM ⊂ T nM is a ∆−extension if and only if R ⊂ T is a ∆−extension.

• RnM ⊂ T nM is a λ−extension if and only if R ⊂ T is a λ−extension.

40



Chapter 4: Flat Epimorphisms

4.1 Integrally Closed Minimal Extensions

Let R be a ring. Given R-modules L,M,N a short exact sequence is a chain of R-module

homomorphisms

0 L M N 0
α β

such that α is injective and β is surjective. We say that an R−module A is flat if for any

short exact sequence as above, the induced sequence obtained by tensoring each module

with A, namely

0 A⊗R L A⊗RM A⊗R N 0,
ι⊗ α ι⊗ β

is also a short exact sequence. (We present this only as the classical definition of flatness;

with the aid of known equivalent properties, we will in fact never need to use the definition

in any of the proofs in this chapter.)

Let f : A → B be a ring homomorphism. Then we say that f is an epimorphism if

for any ring homomorphisms g, h : B → C, g ◦ f = h ◦ f implies g = h. In this sense,

epimorphisms generalize surjective homomorphisms; the canonical map R → R/I (for a

ring R with ideal I) is commonly given as an example of an epimorphism. If A ⊆ B is a

ring extension and the inclusion map f : A→ B is an epimorphism, we will say that A ⊆ B

is an epimorphic extension (or simply an epimorphism, when the context is obvious).

By saying that a ring homomorphism f : A → B is a flat epimorphism (in particular,
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when B is a ring extension of A), we mean that f is an epimorphism making B a flat

A−module (via the action a · b := f(a)b for each a ∈ A, b ∈ B). If S is a multiplicatively

closed set in R, then the natural map R→ RS is an example of a flat epimorphism. Thus if

S contains only regular elements, then R ⊂ RS is a ring extension that is a flat epimorphism

(as expected, we may refer to this as a flat epimorphic extension).

Let R ⊂ T be a minimal extension, so T = R[u] for each u ∈ T \ R. Clearly this

extension is integral or R is integrally closed in T . If R is integrally closed in T , then this

extension is a flat epimorphism by the following lemma, which can be derived by combining

[K, Theorem 44] with [FO, Theorem 2.2 ((ii)(e) and (iii))].

Lemma 4.1.1. Let R ⊂ T be a minimal extension. Then R ⊂ T is either an integral

extension or a flat epimorphism. Thus every minimal integrally closed extension of rings is

a flat epimorphism.

We will use this fact to determine when certain minimal extensions are integral, by show-

ing that they are not flat epimorphisms. The next lemma (a generalization of Lemma 1.5.8

that will only be necessary for the current section) is a consequence of [DFF, Proposition

2.6].

Lemma 4.1.2. Let f : R→ R′ be a ring homomorphism with I and ideal of R′. Then the

prime ideals of R ./f I are exactly the sets of the following two forms:

1. {(p, f(p) + i)|p ∈ P, i ∈ I} and

2. {(a, f(a) + i)|a ∈ R, i ∈ I, f(a) + i ∈ Q}

where the P run through all primes of R and the Q run through all primes of R′.

Lemma 4.1.3. Let f : R → R′ be a ring homomorphism with I ⊂ J ideals of R′. Let

P ∈ Spec(R) and Q ∈ Spec(R′). If Q0 = {(p, f(p) + j)|p ∈ P, j ∈ J} and Q1 =

{(a, f(a) + j)|a ∈ R, j ∈ J, f(a) + j ∈ Q} in Spec(R ./f J), then

P0 := Q0 ∩ (R ./f I) = {(p, f(p) + i)|p ∈ P, i ∈ I}
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and

P1 := Q1 ∩ (R ./f I) = {(a, f(a) + i)|a ∈ R, i ∈ I, f(a) + i ∈ Q} .

Proof. Since I ⊂ J it is clear that P0 ⊆ Q0. Obviously P0 is contained in R ./f I and thus

in the intersection Q0 ∩ (R ./f I). Conversely, let (p, f(p) + j) lie in Q0. If it also lies in

R ./f I, then we must have j ∈ I. It follows that Q0 ∩ (R ./f I) ⊆ P0 and so these primes

are equal.

Next, since I ⊂ J it is clear that P1 ⊆ Q1. Further, since P1 ⊆ R ./f I we have

that P1 ⊆ Q1 ∩ (R ./f I). Now let (a, f(a) + j) ∈ Q1. If it is also in R ./f I, then

we must have j ∈ I. Also f(a) + j ∈ Q by definition of Q1. Thus Q1 ∩ (R ./f I) ⊆

{(a, f(a) + i)|a ∈ R, i ∈ I, f(a) + i ∈ Q} = P1.

Lemma 4.1.4. Let f : R→ R′ be a ring homomorphism with I ⊂ J ideals of R′. Suppose

for some Q ∈ Spec(R′) that I ⊆ Q, J * Q. Then the contraction mapping Spec(R ./f J)→

Spec(R ./f I) is not one-to-one.

Proof. Take such a Q and consider the primes

Q0 = {(a, f(a) + j)|a ∈ R, j ∈ J, f(a) + j ∈ Q}

and

Q1 =
{

(p, f(p) + j)|p ∈ f−1(Q), j ∈ J
}

in Spec(R ./f J). These are distinct, since by assumption there exists j ∈ J \Q, and thus

(0, j) ∈ Q1 \Q0. But we claim these primes have the same contraction in R ./f I.

By the Lemma 4.1.3, P0 := Q0 ∩ (R ./f I) = {(a, f(a) + i)|a ∈ R, i ∈ I, f(a) + i ∈ Q},

and P1 := Q1 ∩ (R ./f I) =
{

(p, f(p) + i)|p ∈ f−1(Q), i ∈ I
}

. Since f(f−1(Q)) ⊆ Q and

I ⊆ Q, we have for each (p, f(p)+ i) ∈ P1 that f(p)+ i ∈ Q, i.e., P1 ⊆ P0. As for the reverse

inclusion, note for each (a, f(a) + i) ∈ P0, that i ∈ I ⊆ Q, so f(a) ∈ Q, i.e. a ∈ f−1(Q). It

43



follows that P0 ⊆ P1 and we have equality.

Proposition 4.1.5. Let f : R → R′ be a ring homomorphism with I ⊂ J ideals of R′.

Suppose that R ./f I ⊂ R ./f J be a minimal extension. If there exists a Q ∈ Spec(R′)

such that I ⊆ Q but J * Q, then the extension R ./f I ⊂ R ./f J is integral.

Proof. Suppose that such a Q exists. Then by Lemma 4.1.4 the contraction mapping

Spec(R ./f J) → Spec(R ./f I) is not one-to-one. Thus by [L, Chapitre IV, Proposition

1.4] the embedding R ./f I → R ./f J is not an epimorphism. Since every minimal

extension is either integral or a flat epimorphism it follows that R ./f J is integral over

R ./f I.

Corollary 4.1.6. Let f : R → R′ be a ring homomorphism with I and ideal of R′. If I is

prime in R′, then every minimal extension of the form R ./f I ⊂ R ./f J (with J an ideal

of R′ containing I) is integral.

4.2 General Epimorphisms and Flatness

As we have already noted in the previous section, every minimal extension is either integral

or a flat epimorphism. Suppose that R ⊂ T is a ring extension and that J is a common ideal

to R and T . Then R ⊂ T is a non-integral minimal extension if and only if R ./ J ⊂ T ./ J

is a non-integral minimal extension (Corollary 3.2.15 and the forthcoming Corollary 6.1.2),

and either hypothesis implies that R ⊂ T and R ./ J ⊂ T ./ J are flat epimorphisms

(Lemma 4.1.1). We now want to investigate flat epimorphisms in a more general setting,

without making assumptions on integrality or minimality. Further, for the sake of generality

most of the results of this section will be proved for epimorphic (resp., flat epimorphic) maps

which are not necessarily embeddings (i.e., we temporarily stray away from the study of

ring extensions to the more general context of ring homomorphisms). However, as some of
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the tools used have no analogues for general bowtie rings, we will adhere to studying simple

bowtie rings in this section.

We begin the section simply with epimorphisms. After a few notes on flatness, we end

with the main goal of this chapter, investigating flat epimorphisms.

Theorem 4.2.1. Let f : R→ T be a ring homomorphism, and I, J ideals of R, T , respec-

tively, such that f(I) ⊆ J . Define f ′ : R ./ I → T ./ J as f ′(r, r + i) = (f(r), f(r) + f(i)).

If f ′ is an epimorphism then so f . The converse holds if and only if J = f(I)T .

Proof. Suppose f ′ is an epimorphism. Let g, h : T → C be ring homomorphisms satisfying

that g ◦ f = h ◦ f . We can extend g, h to homomorphisms g′, h′ : T ./ J → C by setting

g′(t, t + j) = g(t), h′(t, t + j) = h(t). By construction g′ ◦ f ′ = h′ ◦ f ′ and since f ′ is an

epimorphism we have that g′ = h′. Then by definition of these maps we see that for all

t ∈ T , g(t) = h(t). Thus the map f is an epimorphism.

To analyze the converse, suppose that f is an epimorphism, and note that f(I)T ⊆

JT = J .

First assume the strict inclusion f(I)T ⊂ J ; we will show that f ′ is not an epimorphism

in this case. Define the maps g, h : T ./ J → T/f(I)T by g(t, t+ j) = t, h(t, t+ j) = t+ j

(where for any element s ∈ T , s denotes the canonical image of s in T/f(I)T ). It is clear

that these are both homomorphisms, as each is simply a composition of the projection

map onto one coordinate with the canonical map from T onto T/f(I)T . Note that g 6= h,

since for any j ∈ J \ f(I)T we have g(0, j) = 0 and h(0, j) = j 6= 0. However for any

element (r, r + i) ∈ R ./ I we have that g(f(r, r + i)) = g(f(r), f(r) + f(i)) = f(r) and

h(f(r, r + i)) = h(f(r), f(r) + f(i)) = f(r) + f(i) = f(r), so that g ◦ f = h ◦ f . It follows

that the map f is not an epimorphism.

Now instead, assume that f(I)T = J . Let g′, h′ : T ./ J → C be ring homomorphisms

such that g′ ◦ f ′ = h′ ◦ f ′. Then g(f(r, r + i)) = h(f(r, r + i)) for all (r, r + i) ∈ R ./ I. In

particular g(f(r, r)) = h(f(r, r)) for all r ∈ R. Define the mapping d : f(R) → f(R)∆ as

d(f(r)) = (f(r), f(r)). Clearly d is an isomorphism. Now for all r ∈ R,

45



(g′ ◦ f ′)(r, r) = (h′ ◦ f ′)(r, r)

g′(f(r), f(r)) = h′(f(r), f(r))

(g′ ◦ d)(f(r)) = (h′ ◦ d)(f(r)),

and since f is an epimorphism, g′ ◦ d = h′ ◦ d on all of T ; that is, g′ = h′ on the diagonal

image of T in T ./ J .

Now for any (t, t + j) ∈ T ./ f(I)T , note that we can write this element as (t, t) +

(0,
∑n

k=1 f(ik)tk) = (t, t) +
∑n

k=1(0, f(ik))(tk, tk) = (t, t) +
∑n

k=1 f
′(0, ik)(tk, tk) for some

ik ∈ I, tk ∈ T, n ∈ N. Then (letting h′f ′ := h′ ◦ f ′ and g′f ′ := g′ ◦ f ′) we have

g′(t, t+ j) = g′(t, t) + g′(0, j) = h′(t, t) + g′(0, j)

= h′(t, t) + g′(
n∑
k=1

f ′(0, ik)(tk, tk)) = h′(t, t) +
n∑
k=1

g′f ′(0, ik)g
′(tk, tk) =

h′(t, t) +

n∑
k=1

h′f ′(0, ik)h
′(tk, tk) = h′(t, t) + h′(

n∑
k=1

f ′(0, ik)(tk, tk))

= h′(t, t) + h′(
n∑
k=1

(0, f(ik))(tk, tk)) = h′((t, t) +
n∑
k=1

(0, f(ik))(tk, tk)) = h′(t, t+ j),

so g′ = h′ on all of T ./ f(I)T . It follows that the map f ′ is an epimorphism.

Corollary 4.2.2. Let I ⊂ J be ideals of a ring R. Then the extension R ./ I ⊂ R ./ J

is not an epimorphism. In particular, for any nonzero proper ideal I of a ring R neither

R∆ ⊂ R ./ I nor R ./ I ⊂ R×R (= R ./ R) is an epimorphism.

Corollary 4.2.3. Let R ⊂ T be an extension of rings with I and ideal of R. If R ./ I ⊂

T × T is an epimorphism then I contains a finitely generated dense ideal of R.
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Proof. Recall that T × T = T ./ T . Now supposing R ./ I ⊂ T ./ T is an epimorphism, we

must have that IT = T , by Theorem 4.2.1. The statement then follows from [DS6, Lemma

2.4].

As we have noted, our present goal is to investigate flat epimorphisms, but first we will

record a few quick results on flatness alone.

Proposition 4.2.4. Let R ⊆ T be a ring extension with J an ideal of T . Suppose R is a

PID and that every nonzero element of R is a regular element in T . Then R∆ ⊆ T ./ J is

a flat extension.

Proof. Suppose (r, r)(t, t+ j) = (0, 0) for some 0 6= r ∈ R, (t, t+ j) ∈ T ./ J . Then rt = 0,

and so by assumption t = 0. Now we have (r, r)(0, j) = (0, 0) implying that rj = 0. Again

by assumption j = 0, so that (t, t + j) = (0, 0). It follows that T ./ J is torsion-free as an

R∆−module, so by [R, Corollary 3.50], T ./ J is flat over R∆.

Corollary 4.2.5. If R is a PID then for every ideal I of R, the extension R∆ ⊂ R ./ I is

flat.

Lemma 4.2.6. Let f : R → T be a ring homomorphism, and I, J ideals of R, T , respec-

tively, such that f(I) ⊆ J . Define f ′ : R ./ I → T ./ J as f ′((r, r+ i)) = (f(r), f(r)+f(i)).

If f ′ is a flat ring map then so is f .

Proof. Suppose that the map f ′ is flat, and suppose that we have the sum
∑n

k=1 tkf(rk) = 0

where tk ∈ T , rk ∈ R. Thus
∑n

k=1(tk, tk)(f(rk), f(rk)) =
∑n

k=1(tk, tk)f
′(rk, rk) = (0, 0),

with (tk, tk) ∈ T ./ J, (rk, rk) ∈ R ./ I. Now by [R, Lemma 3.65(i) ⇒ (iii)], there exists

(t′q, t
′
q+j′q) ∈ T ./ J for q = 1, ...,m (some fixed integer m), and (sqk, sqk+eqk) ∈ R ./ I with∑

k f
′(sqk, sqk + eqk)f

′(rk, rk) =
∑

k(f(sqk), f(sqk) + f(eqk))(f(rk), f(rk)) = (0, 0) for all q

and
∑m

q=1(t′q, t
′
q + j′q)f

′(sqk, sqk + eqk) =
∑m

q=1(t′q, t
′
q + j′q)(f(sqk), f(sqk) + f(eqk)) = (tk, tk)

for all k.
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Then looking only at the first coordinates it follows that
∑

k f(sqk)f(rk) = 0 for all q

and
∑m

q=1 t
′
qf(sqk) = tk for all k. Now applying [R, Lemma 3.65(iii) ⇒ (i)], we have that T

is flat as an f(R)−module, so f is a flat map.

The flatness of an extension of bowtie rings R ./ I ⊂ T ./ J does not follow easily

from the flatness of R ⊆ T . By [M2, p. 33], any flat ring extension satisfies going-down,

so even for R = T (which is trivially flat over itself), we will see (in Theorem 6.3.7) that

the extension R ./ I ⊂ R ./ J must satisfy rather complicated assumptions on the ideals I

and J to imply that the ring extension satisfies going-down; thus complicated assumptions

are necessary for the extension to even possibly be flat. In particular, setting R = T , then

Example 6.3.10 gives an extension where T is flat over R (trivially) but T ./ J is not flat

over R ./ I.

If we restrict ourselves to flat epimorphisms, however, then we do find a strong corre-

lation between the extensions R ⊂ T and R ./ I ⊂ T ./ J , or more generally between any

given homomorphism R → T and the map that it induces from R ./ I to T ./ J . Before

proving this correlation, we will need the following lemma.

Lemma 4.2.7. Let f : R→ T be a ring homomorphism, and let I be an ideal of R. Define

f ′ : R ./ I → T ./ IT by f ′(r, r + i) = (f(r), f(r) + f(i)). Let P ′ ∈ Spec(R ./ I), where

P ′ is constructed from P ∈ Spec(R) in the sense of Lemma 1.5.8. If f(P )T = T , then

f ′(P ′)(T ./ IT ) = T ./ IT .

Proof. Clearly f ′(P ′)(T ./ f(I)T ) ⊆ T ./ f(I)T . We wish the show that the reverse

inclusion holds as we assume that f(P )T = T .

We know that P ′ must be of one of the two forms described in Lemma 1.5.8. In either

case, fix the P ∈ Spec(R) used to define P ′ (again in the sense of Lemma 1.5.8), and note

that P ′ contains the diagonal image {(p, p)|p ∈ P} of P in R ./ I. Let x be an arbitrary

element of T ./ f(I)T . Then x has the form (t, t+
∑
f(ik)tk) for t, tk ∈ T, ik ∈ I. Rewrite

this as (t, t)+
∑

(0, f(ik)tk). Since f(P )T = T we see that (t, t) = (
∑
f(pj)tj ,

∑
f(pj)tj) =
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∑
(f(pj), f(pj))(tj , tj) =

∑
f ′(pj , pj)(tj , tj) ∈ f ′(P ′)(T ./ f(I)T ). Thus we only need to

show that
∑

(0, f(ik)tk) ∈ f ′(P ′)(T ./ f(I)T ). We will prove something slightly stronger

and show that (0, f(ik)tk) ∈ f ′(P ′)(T ./ f(I)T ) for every k; thus we will abuse notation

and drop the subscript k for clarity. Now since f(P )T = T , we can write (for some pl ∈ P ,

tl ∈ T )

(0, it) = (0, f(i)
∑

pltl) = (0,
∑

plf(i)tl)) =

∑
(0, pl(f(i)tl)) =

∑
(pl, pl)(0, f(i)tl) ∈ P ′(T ./ f(I)T ).

Thus T ./ f(I)T ⊆ P ′(T ./ f(I)T ) and we have that the sets are equal.

Lemma 4.2.8. Let f : R → T be a ring homomorphism and let I, J be ideals of R, T ,

respectively such that f(I) ⊆ J . Define f ′ : R ./ I → T ./ f(I)T as f ′(r, r + i) =

(f(r), f(r) + f(i)). Define h : T ./ J → T as the projection to the first coordinate, i.e.,

h(t, t + j) = t. If P ′ ∈ Spec(R ./ I) lies over P ∈ Spec(R) (as in Lemma 1.5.8), then

(h ◦ f ′)(R ./ I \ P ′) = f(R \ P ).

Proof. Let y ∈ f(R \ P ). Then there exists an x ∈ R \ P with f(x) = y. Note that

(x, x) ∈ R ./ I \ P ′ by Lemma 1.5.8. Now (y, y) = (f(x), f(x)) = f ′(x, x) ∈ f ′(R ./ I \ P ′),

so y = (h ◦ f ′)(x, x) ∈ (h ◦ f ′)(R ./ I \ P ′).

Conversely, let y ∈ (h◦f ′)(R ./ I \P ′). Then there is an element (x, x+ e) ∈ R ./ I \P ′

with (h ◦ f ′)(x, x + e) = y. But (h ◦ f ′)(x, x + e) = h(f(x), f(x) + f(e)) = f(x), so

that y = f(x). Clearly x ∈ R, but it is not possible that x ∈ P or else we would have

(x, x+ e) ∈ P ′. It follows that y = f(x) ∈ f(R \ P ).
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The proof of the following proposition essentially mimics the proofs found in [D, Propo-

sition 2.7(a)] and [DS3, Proposition 4.4(b)]. We generalize to the context of ring homo-

morphisms as studied in the current section, and for the sake of clarity, provide details

that were taken as obvious (or unnecessary) in the original proofs. As usual, given a ring

homomorphism f : R → T and a prime P ∈ Spec(R) and we use fP : RP → Tf(R\P ) to

denote the ring homomorphism fP ( rs) = f(r)
f(s) .

Proposition 4.2.9. Let f : R → T be a ring homomorphism and let I, J be ideals of

R, T , respectively such that f(I) ⊆ J . Define f ′ : R ./ I → T ./ J as f ′((r, r + i)) =

(f(r), f(r)+f(i)). Let P ∈ Spec(R) and let P ′ be a prime of R ./ I lying over P ∈ Spec(R)

as in Lemma 1.5.8. Then:

1. If I ⊆ P , then (R ./ I)P ′ ∼= RP ./ IP and (T ./ J)f ′((R./I)\P ′)
∼= Tf(R\P ) ./ Jf(R\P ).

2. If I * P , then (R ./ I)P ′ ∼= RP and (T ./ J)f ′(R./I\P ′)
∼= Tf(R\P ).

Proof. (1.) Suppose that I ⊆ P . The conclusion that (R ./ I)P ′ ∼= RP ./ IP is proved

directly in [D, Proposition 2.7(a.)]. We will now show that (T ./ J)f ′((R./I)\P ′)
∼= Tf(R\P ) ./

Jf(R\P ). Let φ : T ./ J → Tf(R\P ) ./ Jf(R\P ) be the homomorphism defined by (t, t+ j) 7→

( t1 ,
t
1 + j

1). We claim that every element of (φ◦f ′)(R ./ I \P ′) is a unit in Tf(R\P ) ./ Jf(R\P ).

Let (r, r + i) ∈ R ./ I \ P ′. Then we must have that r ∈ R \ P and so ( r1 ,
r
1 + i

1) is a unit

in RR\P ./ IRR\P (as in the proof of [D, Proposition 2.7(a.)]). Thus (φ ◦ f ′)(r, r + i) =

f ′
P ′ (

r
1 ,

r
1 + i

1) is a unit in f(R)f(R\P ) ./ f(I)f(R)f(R\P ) ⊆ Tf(R\P ) ./ f(I)Tf(R\P ).

Hence, by the Universal Mapping Property of ring localizations, there exists a unique

extension Ψ : (T ./ f(I)T )f ′(R./I\P ′) → Tf(R\P ) ./ f(I)Tf(R\P ) of φ given by Ψ(ab ) =

φ(a)φ(b)−1. We only need to show that this is an isomorphism. To show that it is onto, let

( ts ,
t
s + j

z ) ∈ Tf(R\P ) ./ f(I)Tf(R\P ). Since s, z are both in the multiplicatively closed set

f(R \ P ) of T , so is their product sz; in particular, sz 6= 0. Now we can take the element

(tz,tz+js)
(sz,sz) to map to ( ts ,

t
s + j

z ) via Ψ. To show that the map is one-to-one, suppose that
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Ψ(t, t + j) = (0, 0). Then by definition of localization it follows that there exist elements

u, v in the multiplicatively closed set f(R \ P ) satisfying ut = 0 and v(t + j) = 0; hence

(uv, uv)(t, t + j) = (0, 0), so (by the definition of localization and the observation that

(uv, uv) lies in the multiplicatively closed set f ′(R ./ I \ P )) we have that (t, t+ j) = (0, 0)

in (T ./ f(I)T )f ′(R./I\P ′). Thus Ψ has zero kernel, so it is an injection.

(2.) Now suppose I * P . The proof that (R ./ I)P ′ ∼= RP is shown in [DS3, Propo-

sition 4.4(b.)], so we proceed to show that (T ./ J)f ′(R./I\P ′)
∼= Tf(R\P ). By Lemma

1.5.8 there are two cases to consider. For the first case, we assume that P ′ has the form

P ′ = {(p, p+ i)|p ∈ P, i ∈ I}. The surjective ring homomorphism h : T ./ J → T defined

by (t, t + j) 7→ t has kernel equal to 0 ⊕ J . If j ∈ I \ P , then (j, 0) ∈ R ./ I \ P ′, so that

(f(j), 0) = f ′(j, 0) ∈ f ′(R ./ I \P ′). Since (f(j), 0)(0⊕J) = (0, 0) we conclude that 0⊕J is

in contained in the kernel of the canonical map T ./ J → (T ./ J)f ′(R./I\P ′). Now Lemma

4.2.8 gives that h(f ′(R ./ I \ P ′)) = f(R \ P ), and we conclude by [DS3, Lemma 4.3] that

(T ./ J)f ′(R./I\P ′)
∼= Tf(R\P ).

Now for the second case, we assume that P ′ has the form P ′ = {(p+ i, p)|p ∈ P, i ∈ I}.

Consider the surjective map h : T ./ J → T given by (t, t + j) 7→ t + j. The kernel of

this map is J ⊕ 0. Given j ∈ I \ P , then (0, f(i)) = f ′(0, i) ∈ f ′(R ./ I \ P ′). Since

(0, f(i))(J ⊕ 0) = (0, 0) we see that J ⊕ 0 is contained in the kernel of the canonical map

T ./ J → (T ./ J)f ′(R./I\P ′). As in the preceding paragraph, h(f ′(R ./ I \P ′)) = f(R \P ),

and so by [DS3, Lemma 4.3] we again have that (T ./ J)f ′(R./I\P ′)
∼= Tf(R\P ).

Theorem 4.2.10. Let f : R → T be a ring homomorphism and let I, J be ideals of R, T ,

respectively such that f(I) ⊆ J . Define f ′ : R ./ I → T ./ f(I)T as f ′(r, r + i) =

(f(r), f(r) + f(i)). If f ′ is a flat epimorphism then so is f . The converse holds if and only

if J = f(I)T .

Proof. First suppose that f ′ is a flat epimorphism. Then by Theorem 4.2.1 and Lemma
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4.2.6, f is a flat epimorphism as well.

Now conversely, suppose that f is a flat epimorphism. By Theorem 4.2.1, for the map

f ′ to be a flat epimorphism the condition J = f(I)T is necessary (otherwise the extension

is not even an epimorphism). We will show that it is also sufficient; that is, we will show

that the mapping f ′ : R ./ I → T ./ f(I)T is indeed a flat epimorphism.

By [L, Proposition 2.4] (or [G3, Theorem 1.2.21]) f being a flat epimorphism is equivalent

to the following condition: that for every P ∈ Spec(R), either f(P )T = T or RP ∼= Tf(R\P )

(via the map fP ). We want to utilize this same theorem by showing that for any given

P ′ ∈ Spec(R ./ I), we have either f ′(P ′)(T ./ f(I)T ) = T ./ f(I)T or (R ./ I)P ′ ∼=

(T ./ IT )f ′(R./I\P ′) (via the map f ′P ′). Thus let P ′ ∈ Spec(R ./ I) be constructed from

P ∈ Spec(R) in the sense of Lemma 1.5.8.

If f(P )T = T , then we have by Lemma 4.2.7 that f ′(P ′)(T ./ f(I)T ) = T ./ f(I)T .

Otherwise, RP ∼= Tf(R\P ). Then we have two cases to consider, I ⊆ P or I * P . If I ⊆ P ,

then by [Proposition 4.2.9 (a.)], we have

(R ./ I)P ′ ∼= RP ./ IP = RP ./ IRP ∼= Tf(R\P ) ./ f(I)Tf(R\P )
∼= (T ./ f(I)T )f ′(R./I\P ′).

If instead we have that I * P , then by [Proposition 4.2.9 (b.)], (R ./ I)P ′ ∼= RP ∼= Tf(R\P )
∼=

(T ./ f(I)T )f ′(R./I\P ′). In any case, the assumption that RP ∼= Tf(R\P ) for all P ∈ Spec(R)

implies that (R ./ I)P ′ ∼= (T ./ f(I)T )f ′(R./I\P ′) for all P ′ ∈ Spec(R ./ I). It now follows

from [L, Proposition 2.4] (or, again, [G1, Theorem 1.2.21]) that f ′ is a flat epimorphism.

Let I be an ideal of a ring R, and let S be a multiplicatively closed set in R. It is not

clear if RS ./ IS will always be a localization of R ./ I at some multiplicatively closed set

in R ./ I, but in any case we now have the following.

Corollary 4.2.11. Let I be an ideal of a ring R and let S be a multiplicatively closed set

in R. Then the natural map R ./ I → RS ./ IS given by (r, r + i) 7→ ( r1 ,
r
1 + i

1) is a flat
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epimorphism.

Since the purpose of this document is to investigate ring extensions, for convenience we

record the results of Theorems 4.2.1 and 4.2.10 in the context of ring extensions.

Theorem 4.2.12. Let R ⊆ T be a ring extension with ideals I ⊆ J , respectively. If

R ./ I ⊆ T ./ J is an epimorphism (resp., flat epimorphism) then R ⊆ T is an epimorphism

(resp. flat epimorphism). The converse (in either case) holds if and only if J = IT .

4.3 Examples

We now return to the context of ring extensions. We will use our results from the previous

section to construct new examples of flat (respectively, flat epimorphic) extensions.

First we provide a quick example of an epimorphic extension that is not flat. As we

have seen, for an extension R ./ I ⊂ T ./ J to be an epimorphism or a flat epimorphism, it

is necessary that J = IT . However, for the extension simply to be flat, that assumption is

not always necessary, as in the following example (where I = 0 so that IT = 0). Since Z is

a PID, this example is an immediate application of Corollaries 4.2.5 and 4.2.2.

Example 4.3.1. The extension Z∆ = Z ./ 0 ⊂ Z ./ 2Z is flat, but not an epimorphism.

Remark 4.3.2. We can ostensibly use Theorem 4.2.12 to construct examples of non-

minimal extensions that are flat epimorphisms from flat epimorphic minimal extensions.

For instance, let R ⊂ T be an integrally closed minimal extension (thus a flat epimorphism

by Lemma 4.1.1), where R contains at least one ideal I that is not an ideal of T . Thus

I ⊂ IT , so by Proposition 3.4.2, R ./ I ⊂ T ./ IT is not a minimal extension, though by

Theorem 4.2.10 it is a flat epimorphism.

The author believes that credit for the original extension in the following example be-

longs to J.R. Isbell (due to a public comment by Anton Geraschenko on an online message

board), though this has not been verified.
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Example 4.3.3. Let k be a field. Set R = k[X,XY,XY 2 − Y ] and T = k[X,Y ]. It is

known that R ⊂ T is an epimorphic extension (where R and T are distinct rings) that is not

a localization. In fact, no nonunit of R becomes a unit in T . With some work, it can also be

shown that R ⊂ T is a flat extension. The rings involved are domains, but we can use them

to create flat epimorphic extensions of rings with zero-divisors which are not localizations.

The easiest way to do this is to create an extension of cross products, R × R ⊂ T × T .

But we can also use nontrivial bowtie rings to give further examples. For instance, set I =

(X,XY,XY 2−Y ) and note that IT = (X,Y ). Thus k[X,XY,XY 2−Y ] ./ (X,XY,XY 2−

Y ) ⊂ k[X,Y ] ./ (X,Y ) is a flat epimorphic extension by Theorem 4.2.12.

We wish to show that this example is not a localization. Suppose that the extension

R ./ I ⊂ T ./ IT satisfies that T ./ IT = (R ./ I)S for some multiplicatively closed set S

in R ./ I. Then S must not contain any zero-divisors of R ./ I (or else the natural map

from R ./ I into T ./ IT would not be an embedding). In particular, every element of S

must be nonzero in both coordinates (since for instance an element (0, s) could be killed by

(i, 0) ∈ R ./ I for any nonzero i ∈ I). But R is a domain, so this implies that every element

of S must project to a regular element of R in each coordinate.

Now pick (s, s + j) ∈ S such that (s, s + j) is not a unit in R ./ I. We claim that s or

s+ j is not a unit in R. Suppose otherwise, say st = 1, (s+ j)k = 1. Then (tk, tk) ∈ R ./ I

and (s, s + j)(tk, tk) = (k, t) is an element of R ./ I, which implies that k − t ∈ I, so that

(t, k) ∈ R ./ I. But then (s, s+ j) has an inverse in R ./ I, a contradiction. This ends the

proof of the claim.

Now we know that either s or s+j is not a unit in R. Suppose s is not a unit. If (s, s+j)

is a unit in T ./ IT , then there are elements t ∈ T, h ∈ IT such that (s, s+j)(t, t+j) = (1, 1),

and so st = 1. But then some nonunit of R becomes a unit in T , a contradiction. If instead

s + j is not a unit, then we similarly find a t ∈ T, h ∈ IT with (s, s + j)(t, t + h) = (1, 1),

giving (s+ j)(t+ h) = (1, 1) in T , the same contradiction.

It follows that no nonunit elements of R ./ I become units in the extension T ./ IT , so

that this extension cannot be a localization.
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The same reasoning can be used to show that T ./ IT is a flat epimorphic extension of

R ./ I that is not a localization (and where R ./ I 6= T ./ IT since R 6= T ) for any ideal I

of R, in particular (Xn) for any natural number n. Thus the current example provides an

infinite collection of distinct flat epimorphic ring extensions that are not localizations.
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Chapter 5: Complemented Rings and Related Topics

5.1 Equivalent Properties

We say that a ring R satisfies Property A if every finitely generated ideal I ⊆ Z(R) has a

non-zero annihilator (in the literature such a ring is sometimes called a McCoy ring). We

say that R has the annihilator condition, or the (a.c.), if given any two elements a, b ∈ R,

there is a c ∈ R satisfying that AnnR((a, b)) = AnnR(c). Although Property A and the

(a.c.) are related, neither property implies the other in general. Recall that for a ring R

to be von Neumann regular we mean that for any x ∈ R, there exists a y ∈ R such that

x2y = x. We say that R is complemented if its total quotient ring tq(R) is von Neumann

regular. When we say Min(R) is compact, we mean as a subspace of Spec(R) under the

Zariski topology. The motivation for studying these properties together comes from the

following theorem.

Theorem 5.1.1. [H, Theorem 4.5] Let R be a reduced ring. Then the following properties

are equivalent:

• R is complemented.

• tq(R) is complemented.

• R has Property A and Min(R) is compact.

• R has the (a.c.) and Min(R) is compact.

In this chapter we will study each of these properties, and search for equivalences between

the two given rings in the extension R ⊂ R ./ I (resp., R ⊂ R ./f I), where as usual we

associate R with R∆ (resp., with Γ(f)). This will become easier in the next section, where
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we assume that I is a regular ideal. At the end of this chapter we will take a closer look at

complemented rings. In doing so, it will be useful to investigate the total quotient ring of

a bowtie ring, in particular, describing the form of tq(R ./ I) as it relates to tq(R).

We will devote the rest of the current section to studying descent properties in the

extension R ⊂ R ./ I. We will first look at the minimal primes of a ring R (denoted by

Min(R)), and consider when this set is compact. We view Min(R) as a topological subspace

of Spec(R) under the usual Zariski topology. That is, the basic open sets of Spec(R) are

all sets of the form D(J) := {P ∈ Spec(R)|J * P} where J is an ideal of R.

Proposition 5.1.2. Let I be and ideal of a ring R. If Min(R ./ I) is compact, then

Min(R) is compact.

Proof. Suppose that Min(R ./ I) = {Pα} is compact. It follows from [D, Proposition

5] that Min(R ./ I) = {P ′α} ∪ {P ′′α} where P ′α := {(p, p+ i)|p ∈ Pα, i ∈ I} , and P ′′α :=

{(p+ i, p)|p ∈ Pα, i ∈ I}.

Let
⋃
D(Iβ) be an open cover for Min(R). Note for each ideal Iβ of R here, the

set Iβ ./ I is an ideal of R ./ I. We first claim that D(Iβ ./ I) is a(n open) cover for

Min(R ./ I).

Fix an α and consider P ′α, P
′′
α . From our cover for Min(R) we have that there exists a

β with Pα ∈ D(Iβ), so Iβ * Pα, i.e. there exists an x ∈ Iβ \ Pα. Then (x, x) ∈ Iβ ./ I

but (x, x) /∈ P ′α, and (x, x) /∈ P ′′α . Thus Iβ ./ I is not contained in P ′α or P ′′α . Thus

P ′α ∈ D(Iβ ./ I) and P ′′α ∈ D(Iβ ./ I).

It follows that
⋃
D(Iβ ./ I) is an open cover for Min(R ./ I). Take a finite subcover, say

(without loss of generality) D(I1 ./ I)∪ · · · ∪D(In ./ I). We claim that D(I1)∪ · · · ∪D(In)

covers Min(R).

Let Pα ∈ Min(R). Then P ′α ∈ Min(R ./ I) so there must be a k ∈ {1, ..., n} where

P ′α ∈ D(Ik ./ I), i.e. Ik ./ I * P ′α. Thus there exists an (ik, ik + i) ∈ Ik ./ I that is not

in P ′α. If ik ∈ Pα, then surely (ik, ik + i) ∈ P ′α, so we must have ik /∈ Pα, so Ik * Pα, and
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Pα ∈ D(Ik). Hence the finite collection of open sets D(I1), ..., D(In) covers Min(R), and it

follows that Min(R) is compact.

Next we study the descent of Property A, and this will suffice to show the descent of

the property of being complemented.

Proposition 5.1.3. Let I be an ideal of a ring R. If R ./ I has Property A, then so does

R.

Proof. First suppose that R ./ I has Property A, and let (r1, ..., rn) be a finitely generated

ideal of R consisting of zero-divisors. Then it is easy to see that ((r1, r1), ..., (rn, rn)) is

a finitely generated ideal of R ./ I consisting of zero-divisors in this ring. Since R ./ I

has Property A, there is some nonzero (s, s+ j) annihilating this ideal. Then we can take

whichever of s or s+ j is nonzero to annihilate (r1, ..., rn).

Corollary 5.1.4. Let I be an ideal of a ring R. If R ./ I is complemented, then R is

complemented.

Proof. If R ./ I is complemented then by Theorem 5.1.1 it has Property A and Min(R ./ I)

is compact. But then, as we have seen in Propositions 5.1.3 and 5.1.2, R has Property A

and Min(R) is compact, so that (by Theorem 5.1.1) R is complemented.

In the case of general bowtie rings, R and R′ having one of the above properties does

not necessarily imply that R ./f I will have it. We will see numerous counterexamples

in the next section. Whether the Property A and the (a.c.) always ascend in the case

of simple bowtie rings is still unknown. However, as we will see at the end of this chap-

ter, the condition that R ./ I be complemented is equivalent to the condition that R be

complemented.
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5.2 Results Where I is Regular

We will proceed to study the related properties described in the previous section, now

specifically for the case that the ideal I used in the construction R ./ I is a regular ideal

of R′ (i.e., I contains a non-zero-divisor of R′) and f−1(I) is a regular ideal of R. In this

context the properties behave very nicely, even though we are working in the general bowtie

ring construction R ./f I.

Lemma 5.2.1. Let R1, ..., Rn be rings. Then R1 × · · · × Rn has Property A if and only if

each of the Rk has Property A.

Proof. Clearly it suffices to prove the lemma for two rings. Thus consider R × S for two

rings R and S.

First suppose that R × S has Property A. Let I and J be finitely generated ideals

contained in Z(R) and Z(S), respectively. Then I × S is a finitely generated ideal of

R×S and consists of zero-divisors (any element (i, s) ∈ I ×S is annihilated by (z, 0) where

z ∈ AnnR(i)). Since R×S has Property A, there exists some nonzero element (x, y) ∈ R×S

annihilating I×S. Clearly y must be zero. Thus x is nonzero, and we see that x annihilates

I in R. The argument for J is identical and it follows that both R and S have Property A.

Now suppose that both R and S have Property A. Let H be a finitely generated ideal

of R × S consisting of zero-divisors. Then H = I × J for some finitely generated (possibly

improper) ideals I, J of R,S, respectively. If I consists of zero-divisors, then we can find

an x in R annihilating I (since R has Property A). Then (x, 0) annihilates H. If J consists

of zero-divisors, then it is annihilated by some nonzero y ∈ S and so the element (0, y)

annihilates H. Finally, if I and J are both regular ideals of R and S, respectively, then we

can find a regular element i ∈ I and a regular element j ∈ J . But then (i, j) is a regular

element of H, a contradiction.

Corollary 5.2.2. Let R be a zero-dimensional ring. Then R ./ I has Property A for every

(proper or improper) ideal I of R.
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Proof. Suppose dim(R) = 0 and that I is any proper ideal of I. Then by [D, Remark 1],

dim(R ./ I) = 0. Thus by [H, Corollary 2.12], R ./ I satisfies Property A. Finally, the

case where I = R follows from [H, Corollary 2.12] and Lemma 5.2.1 above, recalling that

R ./ R = R×R.

Proposition 5.2.3. Let f : R→ R′ be a ring homomorphism with I an ideal of R′. Suppose

I and f−1(I) are regular ideals of R′ and R, respectively. Then R ./f I has Property A if

and only if R and R′ both have Property A.

Proof. First we assume that both rings R and R′ have Property A. Then by [DFF, Propo-

sition 3.1] tq(R ./f I) = tq(R)× tq(R′). By [H, Corollary 2.6], tq(R) and tq(R′) then both

have Property A and by Lemma 5.2.1, tq(R ./f I) = tq(R) × tq(R′) has Property A. Now

by [H, Corollary 2.6], R ./f I has Property A.

We can essentially reverse this argument. Suppose that R ./f I has Property A. Then

by [H, Corollary 2.6] and [DFF, Proposition 3.1], tq(R ./f I) = tq(R)× tq(R′) has Property

A. By the lemma now tq(R) and tq(R′) both have Property A, so finally by [H, Corollary

2.6], R and R′ both have Property A.

We note that this result may not hold when I and f−1(I) are not regular ideals. Consider

the following counterexample.

Example 5.2.4. This example is adapted from [H, p. 174, Example 2]. Let K be an

algebraically closed field and D = K[X,Y ]. Let {Pγ} be the set of all nonzero principal

prime ideals of D, indexed by some set Γ and create the new index set I := Γ×N. For each

index i = (γ, n) ∈ I, define Di = D/Pγ (so that for each γ we in fact take a countably infinite

collection of copies of the same ring D/Pγ). We let E =
∏
i∈I Di, and define φ : D → E to

be the canonical projection onto each coordinate (i.e., the “diagonal” mapping). Define the

direct sum J =
∑

i∈I Di (note that J is an ideal of E that is not regular, and φ−1(J) = 0).
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Now consider the ring D ./φ J , which is canonically isomorphic to the A+B construction

(in the sense of [H, p. 169]), where A = φ(D), B =
∏
i∈I Di. This ring does not have

Property A (as described in the adapted example in [H]), even though the ring E does (this

can be shown without much difficulty) and the domain D does trivially.

Lemma 5.2.5. Let R1, ..., Rn be rings. Then R1 × · · · × Rn has the (a.c.) if and only if

each of the Rk has the (a.c.).

Proof. As in Lemma 5.2.1 we only need to prove the lemma for two rings R,S. Suppose

R,S have the (a.c.). Let x, y ∈ R × S, say x = (x1, x2), y = (y1, y2). Since R (resp. S)

has the (a.c.) there exists z1 ∈ R (resp. z2 ∈ S) with AnnR((x1, y1)) = AnnR(z1) (resp.

AnnS((x2, y2)) = AnnS(z2)). Let z = (z1, z2) ∈ R × S. Then straightforward calculations

show that AnnR×S(x, y) = AnnR×S(z), so R× S has the (a.c.).

Now suppose R × S has the (a.c.). We will show that R has the (a.c.); thus, let

x, y ∈ R. We wish to find an element z ∈ R such that AnnR((x, y)) = Ann(z). If

(x, y) = R, then AnnR((x, y)) = 0 = AnnR(1) and we are done. Otherwise (x, y) ⊂ R (so

((x, 1), (y, 1)) ⊂ R × S) and by assumption, AnnR×S(((x, 1), (y, 1))) = AnnR×S((a, b)) for

some (a, b) ∈ R×S. Note that b must be regular: if there is some z2 ∈ S with z2b = 0, then

(0, z2) ∈ AnnR×S((a, b)) = AnnR×S(((x, 1), (y, 1))) implies that (0, z2)(x, 1) = (0, z2) =

(0, 0), so z2 = 0. We claim that AnnR((x, y)) = AnnR(a).

Say zx = zy = 0 6= za. Then (z, 0)(x, 1) = (z, 0)(y, 1) = (0, 0) 6= (z, 0)(a, b) = (za, 0),

contradicting our definition of Ann((a, b)). It follows that AnnR((x, y)) ⊆ AnnR(a).

For the reverse inequality, say za = 0 for some z ∈ R. Let
∑
rix

jiyki ∈ (x, y). Note

that (z, 0) ∈ AnnR×S((a, b)), and thus by assumption (z, 0) ∈ AnnR×S((x, 1), (y, 1)). In

particular,

(z, 0)
∑

(ri, 1)(x, 1)ji(y, 1)ki = (0, 0),

so in the first coordinate here we have that z
∑
rix

jiyki is zero. Then z ∈ AnnR((x, y)),

so that AnnR(a) ⊆ AnnR((x, y)), giving equality. It follows that R has the (a.c.). By a
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symmetric argument we see that S has the (a.c.) as well.

Proposition 5.2.6. Let f : R→ R′ be a homomorphism of rings and I an ideal of R′ such

that I, f−1(I) are regular ideals of R′, R, respectively. Then R ./f I has the (a.c.) if and

only if R and R′ both have the (a.c.).

Proof. We note by [BDM, Corollary 2.5] that a ring R satisfies the (a.c.) if and only if tq(R)

does. With this and Lemma 5.2.5 the proof proceeds almost exactly as in Proposition 5.2.3,

again noting that (under the given assumptions) tq(R ./f I) = tq(R) × tq(R′). In fact

each step is reversible: R,R′ both have the (a.c.) ⇔ tq(R), tq(R′) both have the (a.c.) ⇔

tq(R)× tq(R′) = tq(R ./f I) has the (a.c.) ⇔ R ./f I has the (a.c.).

Example 5.2.7. We will give an example to show why we assume I and f−1(I) to be

regular for this proposition. For the appropriate counterexample, we create the same ring

as in Example 5.2.4, except now we let {Pi} be the set of all maximal ideals of D (this

example is adapted from [H, p. 174, Example 1]).

As before, consider the ring D ./φ J , which is canonically isomorphic to the A + B

construction, where A = φ(D), B =
∏
i∈I Di. This ring does not have the (a.c.) (see the

adapted example in [H]), even though it can be shown that the ring E does, and the domain

D does trivially.

Lemma 5.2.8. Let R1, ..., Rn be rings. Then R1× · · · ×Rn is von Neumann regular if and

only if each of the Rk is von Neumann regular.

Corollary 5.2.9. Let R1, ..., Rn be rings. Then R1× · · · ×Rn is complemented if and only

if each of the Rk is complemented.

The proof of the lemma is trivial. The corollary follows directly from our definition of

complemented rings and the fact that for any two rings R and S, tq(R×S) ∼= tq(R)× tq(S).
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Proposition 5.2.10. Let f : R → R′ be a homomorphism of rings and I an ideal of R′

such that I, f−1(I) are regular ideals of R′, R, respectively. Then R ./f I is complemented

if and only if R and R′ are both complemented.

Proof. Suppose R ./f I is complemented. Note by [DFF, Proposition 3.1] that tq(R ./f

I) = tq(R)× tq(R′) = tq(R×R′), so this ring is von Neumann regular by our assumption.

But then tq(R) and tq(R′) are von Neumann regular by Lemma 5.2.8; that is, R and R′ are

complemented.

Conversely, suppose R and R′ are complemented. Then by Lemma 5.2.8, tq(R)× tq(R′)

is von Neumann regular, and thus tq(R ./f I) = tq(R)× tq(R′) is von Neumann regular, so

that R ./f I is complemented.

Example 5.2.11. Complemented rings are always reduced, so we know by Theorem 5.1.1

that any complemented ring R must also satisfy the (a.c.). Note that D ./f J of Example

5.2.7 is reduced but does not satisfy the (a.c.), so must not be complemented. Also, since

domains are complemented, this gives an example of a ring R ./f I that is not complemented

even though R- being a domain- is complemented and R′ is complemented (clearly, since

R′ is a product of fields).

Lemma 5.2.12. Let R be a ring. Then R is complemented if and only if for every element

r ∈ R there is an element s ∈ R satisfying that rs = 0 and r + s is regular (in R).

This lemma is well known, and a proof can be found in [DS3, Proposition 2.4]. The

element s is called a complement for r (hence the terminology complemented ring), and is

not necessarily unique.

Example 5.2.13. Now we give an example where R is complemented and neither of the

ideals I or f−1(I) is regular, but R ./f I is still complemented. Let E denote the direct

sum of the fields Z/pZ where the p run through all prime numbers in Z, and let F denote

the direct product of these fields. Define a homomorphism φ : Z → F as the diagonal
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mapping φ(n) = (n, n, n, ...) (where n in each coordinate represents n reduced modulo p in

the relevant field Z/pZ). We will look at the ring Z ./φ E. Note that Z is complemented

(as is any domain), and that F is complemented being its own total quotient ring and von

Neumann regular. It is clear that E is not regular in F . Also note that f−1(E) = 0 is

not regular in Z. For a given element e ∈ E we will write ep for its projection into (i.e.,

coordinate at) the summand Z/pZ.

Claim: An element (r, r + e) is a zero-divisor in Z ./φ E if and only if ep ≡ −r(mod p)

for some p.

If r = 0 then the statement is almost trivial. Since e is in the direct sum of fields, we

can pick an index p where ep = 0. Define the element f in this direct sum by fp = 1, but

fq = 0 for q 6= p. Clearly then (0, f) annihilates the element (0, e). Now instead suppose

r 6= 0. If at some index p, ep ≡ −r(mod p), then at this index r + e is zero. Again take f

as defined above, and (0, f) annihilates the element (r, r + e).

Conversely, suppose that at no index p does ep ≡ −r(mod p). Then at no index is r + f

ever zero. By our defined (usual) multiplication on R, for an element (s, s+ f) to annihilate

(r, r + e), we would need rs = 0 in Z. Note that r is nonzero by assumption, for if r = 0,

then we would have ep ≡ −r(mod p) at some index, by definition of direct sum. Thus we

must have that s = 0. Now for the element (0, f) to annihilate (r, r + e) we need that at

some index p, fp(r + ep) ≡ 0(mod p). But Z/pZ is a domain, and by assumption (r + ep)

is nonzero here, so we must have fp = 0. Since this is true for all p and since s = 0, then

(s, s + f) = (0, 0) and it follows that the annihilator of (r, r + e) is zero. This ends the proof

of the claim.

Now we are ready to show that Z ./φ E is complemented. Consider an element (r, r+e).

Trivially, if this element is zero we take the identity as its complement and if it is regular

we take zero as the complement. So we can assume this element is a nonzero zero-divisor.

Thus by the claim, ep ≡ −r(mod p) for some p.

Let P be the set of prime indices p for which ep ≡ −r(mod p). Define f in the direct

64



sum of fields Z/pZ by fp = 1 for p ∈ P and fp = 0 otherwise. We claim that (0, f) is a

complement for (r, r + e).

By construction (0, f) (r, r + e) = (0, 0). Now we consider the sum, (0, f) + (r, r + e) =

(r, r + e + f), which we wish to be regular. By the claim, it is sufficient to show that at

no index p will we have ep + fp ≡ −r(mod p). At any index p /∈ P we have that fp = 0

and by definition of P , that ep 6= −r(mod p), so ep + fp 6= −r(mod p). On the other hand,

for p ∈ P we have that ep ≡ −r(mod p), so that ep + fp = ep + 1 6= −r(mod p). Thus the

sum satisfies the claim’s condition to be regular, and so (0, f) is a complement for (r, r+e).

Then by Lemma 5.2.12, Z ./φ E is complemented, so this gives our desired example.

5.3 tq(R) and Complemented Rings

If I is a regular ideal of a ring R, then tq(R ./ I) ∼= tq(R) × tq(R). However, no general

formula seems to be known for tq(R ./ I) without the assumption that I be regular. It is

not difficult to see that tq(R∆) ∼= tq(R)∆ and that all regular elements of R∆ are regular

in the extension R ./ I. It follows that tq(R∆) ⊆ tq(R ./ I). However, there is no obvious

guarantee that tq(R ./ I) ⊆ tq(R×R) in all cases. We will show that this in fact does hold,

and use this knowledge to describe exactly when R ./ I is complemented, and subsequently

to describe the exact form of total quotient ring of R ./ I.

Lemma 5.3.1. Let I be an ideal of a ring R. Then Reg(R ./ I) ⊆ Reg(R×R).

Proof. We wish to show that every regular element of R ./ I is a regular element of R×R.

We will show the contrapositive. That is, suppose (r, r + i) ∈ R ./ I is a zero-divisor in

R×R; we will show that it is a zero-divisor in R ./ I. We can assume that I 6= 0 (the case

I = 0 is trivial). If r = 0 (resp., r + i = 0) we can take the element (j, 0) (resp., (0, j))

of R ./ I to kill (r, r + i) where j is any nonzero element of I. Thus we may assume that

r 6= 0 and r + i 6= 0. Since (r, r + i) is a zero-divisor in R ×R, there are elements x, y ∈ R

satisfying that rx = 0 and (r + i)y = 0. If xy 6= 0, then we can take the nonzero element
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(xy, xy) ∈ R ./ I to kill (r, r+ i). Assume instead that xy = 0. Note that it is possible that

x or y is zero, but they cannot both be zero since (x, y) is nonzero by assumption. We now

come to multiple cases, depending on whether x or y are elements of AnnR(I).

If y /∈ AnnR(I), then we can pick any j ∈ I such that yj 6= 0 and note that the nonzero

element (0, yj) ∈ R ./ I kills (r, r + i). Similarly, if x /∈ AnnR(I), we can find a j ∈ I with

xj 6= 0 and take the nonzero element (xj, 0) to kill (r, r + i).

Assume that x 6= 0. We can assume further that x ∈ AnnR(I) by the preceding

paragraph. Then clearly the nonzero element (x, x) ∈ R ./ I annihilates (r, r + i). Finally,

if x = 0 we must have y 6= 0. We can assume y ∈ AnnR(I), which gives yi = 0 so that

yr = y(r+ i− i) = y(r+ i)− yi = 0, and we can take the nonzero element (y, y) ∈ R ./ I to

kill (r, r + i). We have shown that (r, r + i) is a zero-divisor in R ./ I; it follows that every

regular element of R ./ I is a regular element in R×R.

The following proposition will in fact follow immediately from the upcoming Theorem

5.3.3. However we present it here as we have sufficient information to prove it without

knowing the exact form of tq(R ./ I). In this proposition we use the characterization that

R is complemented if tq(R) is von Neumann regular.

Proposition 5.3.2. Let I be an ideal of a ring R. Then R is complemented if and only if

R ./ I is complemented.

Proof. First note that tq(R)∆ ∼= tq(R∆) embeds into tq(R ./ I), since the regular elements

of R(∼= R∆) embed into the regular elements of R ./ I. Note further that tq(R ./ I) embeds

into tq(R × R) via the canonical map (r,r+i)
(s,s+j) 7→

(r,r+i)
(s,s+j) , since Reg(R ./ I) ⊆ Reg(R × R)

by Lemma 5.3.1. Thus we have an inclusion of rings tq(R)∆ ⊆ tq(R ./ I) ⊆ tq(R × R) ∼=

tq(R)× tq(R). Now by Lemma 3.2.1, we can view tq(R ./ I) (up to isomorphism) as having

the form tq(R) ./ J for some ideal J of tq(R). If we have proper containment J ⊂ tq(R),

then by [CM, Theorem 2.1], this ring tq(R) ./ J is von Neumann regular if and only if tq(R)
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is von Neumann regular; the case where J = tq(R) has the same conclusion (Lemma 5.2.8),

since in this case tq(R) ./ J = tq(R) ./ tq(R) = tq(R)× tq(R). Thus R is complemented if

and only if R ./ I is complemented.

Now we address the form of tq(R ./ I) and show that it naturally occurs as a bowtie

ring itself. In particular, we wish to show that tq(R ./ I) will always be isomorphic to the

ring tq(R) ./ Itq(R). Since Reg(R ./ I) ⊆ Reg(R×R) we see by the proof of Lemma 5.3.1

that tq(R ./ I) ∼= tq(R) ./ J for some ideal J of tq(R). But every localization of a ring is

an epimorphism, so in particular the total quotient ring of a ring is an epimorphism. Thus,

since R ./ I ⊆ tq(R) ./ J , we have by Theorem 4.2.12 that J = Itq(R). We provide an

alternate proof below (following some pieces of [D, Proposition 2.7(a)]), to allow the present

section to be essentially self-contained.

Note that this generalizes the known property ([DF, Corollary 3.3(d)]) that tq(R ./ I) ∼=

tq(R) × tq(R) for any regular ideal I: If s is a regular element of I, then s−1 ∈ tq(R) so

that the ideal Itq(R) of tq(R) contains the element ss−1 = 1. Thus Itq(R) = tq(R) and so

tq(R ./ I) ∼= tq(R)× tq(R) = tq(R) ./ tq(R) = tq(R) ./ Itq(R). It also generalizes the cases

where I is zero or improper: If I = 0, then R ./ 0 ∼= R and tq(R ./ 0) ∼= tq(R) ∼= tq(R) ./ 0;

if I = R, then R ./ R = R × R and tq(R ./ R) = tq(R × R) ∼= tq(R) × tq(R) = tq(R) ./

tq(R) = tq(R) ./ Rtq(R).

Theorem 5.3.3. Let I be an ideal of a ring R. Then tq(R ./ I) ∼= tq(R) ./ Itq(R).

Proof. Set D := Reg(R ./ I). Then for each (s, s + j) ∈ D, (s, s + j) ∈ Reg(R × R) by

Lemma 5.3.1, so that s, s+ j ∈ Reg(R). Thus s−1 and (s+ j)−1 both exist in tq(R).

Now define the map φ : R ./ I → tq(R) ./ Itq(R) by φ((s, s+j)) = ( s1 ,
s
1 + j

1) = ( s1 ,
s+j

1 ).

Given (s, s + j) ∈ D we wish now to show that φ((s, s + j)) is a unit in tq(R) ./ Itq(R).

As we have seen, s−1 and (s + j)−1 both exist in tq(R), so that (1
s ,

1
s+j ) ∈ tq(R) × tq(R).

To see that it in fact lies in tq(R) ./ Itq(R), note that (1
s ,

1
s+j ) = (1

s ,
1
s + 1

s+j −
1
s ) =
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(1
s ,

1
s − j( 1

s(s+j))) ∈ tq(R) ./ Itq(R). It follows that every element of φ(D) is a unit in

tq(R) ./ Itq(R).

Now by the Universal Mapping Property of ring localizations, there exists a unique map

Ψ : tq(R ./ I) → tq(R) ./ Itq(R) defined by Ψ( (r,r+i)
(s,s+j)) = φ((r,r+i))

φ((s,s+j)) . We only need to show

that this map is an isomorphism.

To show that it is onto, let ( rs ,
r
s + i

z ) ∈ tq(R) ./ Itq(R). Since s, z are both nonzero

regular elements of R, we see that sz 6= 0 is also regular. Now we can take the element

(rz,rz+is)
(sz,sz) to map to ( rs ,

r
s + i

z ) via Ψ. To show that the map is one-to-one, suppose that

Ψ( (r,r+i)
(s,s+j)) ≡ (0, 0). Then it follows that r

s ≡ 0 and r+i
s+j ≡ 0 in tq(R), and so we must have

that r = 0, r+ i = 0. Thus the kernel of Ψ is zero; that is, Ψ is one-to-one, and we conclude

that tq(R ./ I) ∼= tq(R) ./ Itq(R).

Remark 5.3.4. The results in this section do not carry over easily to general bowtie rings.

In fact, Lemma 5.3.1 often does not even hold. We will give two examples now. Let

f : R → R′ be a homomorphism of rings, and let I be an f(R)−subalgebra of R′. If I

contains a regular element (of R′) and f−1(I) = 0, or if I = 0 and f−1(I) contains a regular

element of R, then Reg(R ./f I) * Reg(R×R′).

Proof. Suppose I contains the regular element i and that f−1(I) = 0. Then (0, i) ∈ R ./f I.

If (0, i)(a, b) = (0, 0) for some (a, b) ∈ R ./f I, then b = 0 (as i is regular), and so we must

have that a ∈ f−1(I) (as (a, 0) ∈ R ./f I); that is, a = 0. It follows that (0, i) is regular in

R ./f I. However, (0, i) is a zero-divisor in R×R′, annihilated by the element (1, 0).

If I = 0 but f−1(I) is regular, say with regular element j, then we employ a similar

argument to above. We have that (j, 0) ∈ R ./f I. If (j, 0)(a, b) = (0, 0) then a = 0 from

which it follows that b ∈ I; that is, b = 0, and so (j, 0) is regular in R ./f I. However (j, 0)

is a zero-divisor in R×R′, annihilated by the element (0, 1).
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Example 5.3.5. To show that each of the two situations described in the above remark

is possible, we will provide explicit examples here. In the first case, let R be an integral

domain, R′ := R[X], I = XR[X], and f : R → R[X] the natural inclusion map. Clearly I

contains a regular element (in fact, all of its nonzero elements). However f−1(I) = 0 as no

nonzero elements of R map to any polynomials with zero constant terms.

For the second case, let R = Z, R′ = Z/4Z, I = 0, and f : R → R′ the canonical

map. Note that f−1(I) = 4Z, which clearly contains regular elements of Z. In each of these

examples it follows by the above remark that Reg(R ./f I) * Reg(R×R′).

Since regular elements may not embed into regular elements, we see now that without

any extra assumptions on our bowtie ring R ./f I, there is no guarantee that tq(R ./f I) ⊆

tq(R×R′), unlike in the simple bowtie ring case; in particular (defining ft : tq(R)→ tq(R′)

by ft(
r
s) = f(r)

f(s)) there is no guarantee that tq(R ./f I) will have the form tq(R) ./ft Itq(R)

as we might hope (or even the form tq(R) ./ft J for an arbitrary ft(tq(R))−algebra J).

The explicit form of the total quotient ring found for simple bowtie rings will be vital

in the next chapter, where we will use it to find the integral closure of a simple bowtie ring

(Corollary 6.1.9).
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Chapter 6: Integrality

6.1 Integrality and Integral Closure

In this chapter we will study integrality and related properties, such as lying-over, going-

up, going-down, and normal pairs as they apply to extensions of bowtie rings. For a given

bowtie ring extension R ./ I ⊂ R ./ J (with I ⊂ J ideals of a ring R) it follows from [D,

Remark 1] that R ⊂ R ./ J is an integral extension and thus so is R ./ I ⊂ R ./ J since

R ./ I is an intermediate ring (for reference we will also offer this as a corollary to the first

theorem of this chapter).

We construct the following theorem on integrality with our most general form of an

extension of bowtie rings. The details relevant to us will be presented in the corollaries that

follow. The proof of this theorem is essentially a generalization of [DFF, Lemma 3.6].

Theorem 6.1.1. Let R ⊆ T be a ring extension, f : T → T ′ a ring homomorphism, I

an f(R)−subalgebra of T ′, and J an f(T )−subalgebra of T ′ with I ⊆ J . Then T ./f J is

integral over R ./f I if and only if the ring extensions R ⊆ T and f(R) + I ⊆ f(T ) + J are

both integral.

Proof. Suppose T ./f J is integral over R ./f I. For any element t ∈ T , we can find a monic

polynomial p(X) overR ./f I satisfied by (t, f(t)) and clearly t satisfies this same polynomial

with coefficients projected to the first coordinate. Similarly, for any f(t) + j ∈ f(t) + J we

know that (t, f(t) + j) satisfies a monic q(X) over R ./f I, so f(t) + j satisfies this same

monic with coefficients projected to the second coordinate.

Conversely, suppose that both of the ring extensions R ⊆ T and f(R)+I ⊆ f(T )+J are

integral. Let (t, f(t) + j) ∈ T ./f J . By assumption, there are coefficients ak and f(bh) + ih
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in R and f(R) + I, respectively, such that

(t)n + an−1(t)n−1 + · · ·+ a0 = 0

and

(f(t) + j)m + (f(bm−1) + im−1)(f(t) + j)m−1 + · · ·+ f(b0) + i0 = 0.

Now, if (t, f(t) + j)n+m = (0, 0) then the element (t, f(t) + j) is nilpotent, and integrality

follows trivially. Otherwise, it will satisfy the monic polynomial p(X)q(X) over T ./f J ,

where

p(X) = (Xn + (an−1, f(an−1))Xn−1 + · · ·+ (a0, f(a0)))

and

q(X) = (Xm + (bm−1, f(bm−1) + im−1)Xm−1 + · · ·+ (b0, f(b0) + i0).

In either case it follows that the extension R ./f I ⊆ T ./f J is integral.

Corollary 6.1.2. Let R ⊂ T be rings with ideals I, J , respectively such that I ⊆ J . Then

R ./ I ⊂ T ./ J is integral if and only if R ⊂ T is integral.

Corollary 6.1.3. If I ⊂ J are ideals of a ring R, then the extension R ./ I ⊂ R ./ J is

integral. Thus (by [K, Theorem 43]) it satisfies lying-over, going-up, and incomparability

(as defined in the next section).

Corollary 6.1.4. Let f : R→ R′ be a ring homomorphism, and let I, J be f(R)−subalge-

bras of R′ with I ⊂ J . If J ⊆ f(R) or if J ⊆ Nil(R′) then the extension R ./f I ⊂ R ./f J

is integral.

Proof. Suppose that J ⊆ f(R). Let f(a) + j ∈ f(R) + J and note that f(a) ∈ f(R) + I

trivially, and that j ∈ f(R) + I by assumption. Thus f(R) + J is integral over f(R) + I

and so by the Theorem 6.1.1, R ./f I ⊂ R ./f J is integral.
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The case where J ⊆ Nil(R′) is similar except that we now note that f(R)+J is integral

over f(R) + I since every element of f(R) (being in f(R) + I) is integral over it as is every

element in J (trivially, as each element is nilpotent). Thus every element of f(R) +J is the

sum of two integral elements over f(R) + I, so is integral over f(R) + I, and again by the

Theorem 6.1.1, R ./f I ⊂ R ./f J is integral.

Recall that given a ring extension R ⊆ T we use RT , to denote the integral closure of

R in T , and simply R to denote the integral closure of R (that is, the integral closure of R

in its total quotient ring). Following [HS], we say that an element r ∈ R is integral over an

ideal I of R, if there exists an integer n and coefficients ik ∈ Ik with k = 1, ..., n such that

rn + i1r
n−1 + · · ·+ in = 0. The set of all such elements of R is called the integral closure of

I in R and denoted by I. This set in fact forms an ideal of R [HS, Corollary 1.3.1]. We say

that an ideal J of R is integral over I if J ⊆ I.

Proposition 6.1.5. Let f : R → R′ be a ring homomorphism. Let I ⊂ J be ideals of R′

with J integral over I, i.e., J ⊆ I. Then the extension R ./f I ⊂ R ./f J is integral. In

particular, the extension R ./f I ⊂ R ./f I is integral.

Proof. Suppose that J is integral over I. Let (a, f(a) + j) ∈ R ./f J . By assumption

there exist coefficients ik in Ik ⊆ I with jn + i1j
n−1 + · · · + in = 0. But then (0, jn) +

(0, i1)(0, jn−1) + · · ·+ (0, in) = (0, 0), showing that (0, j) is integral over R ./f I. Also, the

element (a, f(a)) of R ./f I is trivially integral over it. Then (a, f(a)+j) = (a, f(a))+(0, j)

is integral over R ./f I, being the sum of two integral elements.

We note that the preceding proposition could also be stated as a corollary, with a slightly

modified proof. Since each f(a) ∈ f(R) lies in f(R) + I, f(a) is trivially integral over this

ring. By assumption each j ∈ J is integral over I and so it is easy to see that j is integral

over the ring f(R) + I. It follows that the ring f(R) + J is integral over f(R) + I and so

by Theorem 6.1.1 above, the extension R ./f I ⊂ R ./f J is integral.
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Theorem 6.1.6. Let R ⊆ T be a ring extension, f : T → T ′ a ring homomorphism, I

an f(R)−subalgebra of T ′, and J an f(T )−subalgebra of T ′ with I ⊆ J . Then the integral

closure of R ./f I in T ./f J is RT ./f (J ∩ f(R) + IT ′
).

Proof. Let (t, f(t) + j) ∈ RT ./f (J ∩ f(R) + IT ′
). Then t is integral over R and it follows

easily that (t, f(t)) is integral over R ./f I: if tn + rn−1t
n−1 + · · · + r0 = 0 (rk ∈ R), then

(t, f(t))n + (rn−1, f(rn−1)(t, f(t))n−1 + · · ·+ (r0, f(r0)) = (0, 0). Also, we are assuming that

j is integral over f(R) + I by some monic, say

jn + (f(sn−1) + in−1)jn−1 + · · ·+ (f(s0) + i0) = 0.

with each sk ∈ R, ik ∈ I. But then (0, j) is integral over R ./f I, satisfying the monic

X[Xn + (sn−1, f(sn−1) + in−1)Xn−1 + · · ·+ (s0, f(s0) + i0)].

Then (t, f(t)) and (0, j) are both in the integral closure of R ./f I (in T ./f J), and thus

so is their sum, (t, f(t) + j).

Now we turn to the reverse inclusion. Let (t, f(t) + j) belong to the integral closure of

R ./f I in T ./f J . We first claim that t is integral over R. Suppose

(t, f(t) + j)n + (rn−1, f(rn−1) + in−1)(t, f(t) + j)n−1 + · · ·+ (r0, f(r0) + i0) = (0, 0)

Then tn + rn−1t
n−1 + · · · + r0 = 0 so we see that t ∈ RT . Since f is a homomorphism it

follows further that f(t) is integral over f(R), and thus over the ring f(R) + I. Now from

the above equation we also have that

(f(t) + j)n + (f(rn−1) + in−1)(f(t) + j)n−1 + · · ·+ (f(r0) + i0) = 0,

so that f(t) + j is integral over f(R) + I, and since f(t) is integral over this ring so is
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j = (f(t) + j)− f(t). That is, j ∈ f(R) + IT ′
, and since j ∈ J by assumption, we have that

(t, f(t) + j) ∈ RT ./f (J ∩ f(R) + IT ′
).

We note that there are multiple ways to write the integral closure in Theorem 6.1.6. Since

the integral closure of f(R)+I in T ′ is intersected with J , the integral closure f(R) + I could

be taken in any subring of T ′ containing J . In particular, we could consider the smallest

intermediate ring between f(R) + I and T ′ containing J (namely the ring f(R) + J), and

write the integral closure of R ./f I in T ./f J as RT ./f (J∩f(R) + I
f(R)+J

). The way that

we recorded the integral closure in Theorem 6.1.6 was merely for brevity and simplicity.

Corollary 6.1.7. Let R ⊆ T be a ring extension, f : T → T ′ a ring homomorphism, and

J an f(T )−subalgebra of T ′. Then the integral closure of Γ(fR) := R ./f 0 in T ./f J is

RT ./f (J ∩ f(R)T
′
).

Corollary 6.1.8. Let R ⊆ T be an extension of rings with ideals I ⊆ J, respectively. Then

the integral closure of R ./ I in T ./ J is RT ./ (J ∩RT ). In particular, identifying R with

its image along the diagonal in T ./ J (that is, R ∼= R∆ = R ./ 0), then the integral closure

of R in T ./ J is RT ./ (J ∩RT ).

With Theorem 6.1.6 and the subsequent Corollary 6.1.8, we are now well-equipped to

determine the integral closure of any simple bowtie ring R ./ I (that is, the integral closure

of R ./ I in its total quotient ring). It is known that if I is a regular ideal, then the integral

closure of R ./ I is R ./ R = R×R ([DF, Corollary 3.3 (c) and (d)]). Since Itq(R) = tq(R)

for any regular ideal I of R, this result is generalized by the following corollary.

Corollary 6.1.9. Let I be an ideal of a ring R. Then the integral closure of R ./ I is

R ./ (Itq(R) ∩R).

Proof. By Theorem 5.3.3, the total quotient ring of R ./ I is tq(R) ./ Itq(R). Since this is

a bowtie ring containing R ./ I we can now apply Corollary 6.1.8 (setting T = tq(R), J =
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Itq(R)), and find that R ./ I = R ./ Itq(R)./Itq(R) = R ./ (Itq(R) ∩R).

We now apply the above results to determine when a bowtie ring is integrally closed

inside a (bowtie ring) extension ring.

Theorem 6.1.10. Let R ⊆ T be a ring extension, f : T → T ′ a ring homomorphism, I

an f(R)−subalgebra of T ′, and J an f(T )−subalgebra of T ′ with I ⊆ J . Then R ./f I is

integrally closed in T ./f J if and only if the following conditions hold:

1. R is integrally closed in T ,

2. f(R) + I is integrally closed in f(R) + J , and

3. J ∩ (f(R) + I) = I.

Proof. If the three conditions are satisfied then clearly R ./f I is integrally closed in T ./f J

by Theorem 6.1.6 (and the remark following it).

Conversely, suppose that R ./f I is integrally closed in T ./f J . Clearly R must be

integrally closed in T , by Theorem 6.1.6. Now suppose that some f(r) + j ∈ f(R) + J

satisfies a monic over f(R) + I, say (f(r) + j)n + (f(rn−1) + in−1) + · · ·+ (f(r0) + i0) = 0.

Then (r, f(r) + j)n + (rn−1, f(rn−1) + in−1)(r, f(r) + j)n−1 + · · ·+ (r0, f(r0) + i0) = (0, 0),

and since R ./f I is integrally closed in T ./f J we must have that (r, f(r) + j) ∈ R ./f I,

so f(r) + j ∈ f(R) + I. Finally, the requirement that J ∩ (f(R) + I) = I follows from the

previous two conditions with Theorem 6.1.6 and Lemma 2.1.3.

Corollary 6.1.11. Let R ⊆ T be a ring extension with ideals I ⊆ J , respectively. Then

R ./ I is integrally closed in T ./ J if and only if R is integrally closed in T and J ∩R = I.

Note here the significant difference between bowtie extensions where we leave the ring

fixed and those where we leave the ideal fixed. In the case above, where the ideal is

essentially kept fixed, we can construct an extension that is not integral. In fact, we will see
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in the next section that if the ideal J is common to R and T we can use them to create a ring

extension R ./ J ⊂ T ./ J in which every intermediate ring is integrally closed in T ./ J ,

in particular a situation where R ./ J is integrally closed in T ./ J . This greatly contrasts

keeping the ring R fixed, as R ./ I ⊂ R ./ J is always necessarily integral (Corollary 6.1.3).

Recall that by saying a ring R is integrally closed we mean that R is integrally closed in

its total quotient ring. Now we have an immediate application of Corollary 6.1.11, keeping

in mind Theorem 5.3.3.

Corollary 6.1.12. Let I be an ideal of a ring R. Then R ./ I is integrally closed if and

only if R is integrally closed and Itq(R) ∩R = I.

Corollary 6.1.13. If R is a total quotient ring (i.e., R = tq(R)) and I is an ideal of R,

then R ./ I is integrally closed if and only if R is integrally closed.

If I is a proper regular ideal, then Itq(R) = tq(R) 6= I. Thus we see that R ./ I is never

integrally closed for any proper regular ideal I of R. This information also follows from

[DF, Corollary 3.3(c), (d)]. Thus the assumption that I ⊆ Z(R) in the following corollary

is justified.

Corollary 6.1.14. If I ⊆ Z(R) and I is prime, then R ./ I is integrally closed if and only

if R is integrally closed.

Proof. Assume that I ⊆ Z(R). If R ./ I is integrally closed (by which we mean integrally

closed in tq(R) ./ Itq(R) by Theorem 5.3.3), then R is integrally closed, by Corollary

6.1.11. For the converse, assume that R is integrally closed and note that Itq(R) ∩ R =

{r ∈ R|dr ∈ I for some d ∈ Reg(R)}, which contains I. Let r /∈ I be an element of Itq(R)∩

R. Then there is some d ∈ Reg(R) satisfying that dr ∈ I. Since I is prime and r /∈ I we

must have that I contains the regular element r, which is absurd.

Some texts use the term minimal prime of a domain to describe a prime that is minimal

over zero. We use it in the natural sense that it contains no other primes properly. Thus in a
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domain the only minimal prime is the zero ideal. By [K, Theorem 84] the set of zero-divisors

of a ring R contains the union of all the minimal primes of R.

Corollary 6.1.15. If P is a minimal prime ideal of a ring R, then R ./ P is integrally

closed if and only if R is integrally closed.

6.2 Normal Pairs

Given a ring extension R ⊂ T , we often refer to the ordered pair (R, T ) of rings simply as

a pair. Additionally, we say that (R, T ) is a normal pair if S is integrally closed in T for

each intermediate ring R ⊆ S ⊆ T . Recall that a ring R is called complemented if tq(R) is

von Neumann regular. The more difficult direction of the upcoming theorem was proved by

Dobbs and Shapiro in [DS3, Proposition 4.5]. For convenience, we first we present a lemma

describing the easier direction. We will prove this lemma for general bowtie rings, though

will return to simple bowtie rings for the proposition.

Lemma 6.2.1. Let R ⊆ T be a ring extension, f : T → T ′ a ring homomorphism, I an

f(R)−subalgebra of T ′, and J an f(T )−subalgebra of T ′ with I ⊆ J . If (R ./f I, T ./f J)

is a normal pair, then (R, T ) is a normal pair.

Proof. Suppose (R ./f I, T ./f J) is a normal pair. If (R, T ) is not a normal pair, then

there is some intermediate ring S (possibly R itself) and some element t ∈ T \ S which is

integral over S. Say

tn + sn−1t
n−1 + · · ·+ s1t1 + s0 = 0.

Note that S ./f J := {(s, f(s) + j)|s ∈ S, j ∈ J} is a ring lying between R ./f I and T ./f J .

Further, the element (t, f(t)) ∈ T ./f J \ S ./f J satisfies the monic

Xn + (sn−1, f(sn−1)) + · · ·+ (s1, f(s1))X + (s0, f(s0)),
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contradicting that S ./f J is (by assumption) integrally closed in T ./f J .

The converse of this lemma is not true in general, even for an extension of simple bowtie

rings. For instance, consider the rings R = Z2Z and T = Q. Take the unique maximal ideal

I = 2R of R and the improper ideal J = Q of T , so that T ./ J = Q ./ Q = Q × Q. We

see easily that (R, T ) is a normal pair, since it is an integrally closed minimal extension.

However, (R ./ I, T ./ J) is not a normal pair. Indeed, R ./ I is not even integrally closed

in T ./ J ; by Corollary 6.1.8, the integral closure of R ./ I (in T ./ J) is Z2Z ./ Z2Z =

Z2Z × Z2Z.

Proposition 6.2.2. Let R ⊂ T be a ring extension with ideals I, J respectively, such that

J ∩ R = I, and R is complemented. Then (R ./ I, T ./ J) is a normal pair if and only if

(R, T ) is a normal pair.

Proof. With the given conditions, (R, T ) being a normal pair implies that (R ./ I, T ./ J)

is a normal pair by [DS3, Proposition 4.5]. The converse follows from Lemma 6.2.1.

We record an unexpected corollary before moving on. We show that given the conditions

of the above proposition, every ideal J of T contains exactly one ideal over J ∩ R of each

intermediate ring R ⊆ S ⊆ T .

Corollary 6.2.3. Let (R, T ) be a normal pair such that R is complemented, and let J be

an ideal of T . Set I := J ∩ R. Then for every intermediate ring R ⊆ S ⊆ T , there is

exactly one ideal K of S satisfying the set inclusions I ⊆ K ⊆ J , namely K = J ∩ S (and

necessarily K = IS). Consequently, no nonzero ideal J of T intersects R trivially.

Proof. Let R ⊆ S ⊆ T as unital subrings. Let K be an ideal of S satisfying I ⊆ K ⊆ J ,

and note that S ./ K is a ring lying between R ./ I and T ./ J . Since R is complemented

it follows by Proposition 6.2.2 that (R ./ I, T ./ J) is a normal pair; in particular, S ./ K
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is integrally closed in T ./ J . Thus by Corollary 6.1.11, K = J ∩ S. Since IS is an ideal of

S satisfying I ⊆ IS ⊆ J the same reasoning shows that IS = J ∩ S = K.

Finally, if J ∩R = 0, then we have for every intermediate ring R ⊆ S ⊆ T that there is

exactly one ideal K := J ∩ S of S satisfying 0 ⊆ K ⊆ J . Since the ideals 0 and J of the

ring S = T clearly both satisfy this assumption we must have that J = 0.

Another way to see the last statement of this corollary, is to note that the extension

R ./ 0 ⊂ T ./ J will contain the intermediate ring T ./ 0, and T ./ J is integral over this

ring (Corollary 6.1.3), so that (R, T ) cannot be a normal pair, by Proposition 6.2.2.

For a trivial example of how to apply this corollary, note that the ring R = Z is integrally

closed in the extension ring T = Z[X]. There are many simple ways to see that (R, T ) is

not a normal pair, but we could also cite the above corollary, taking for instance the ideal

J = (X) in T . Then J ∩ R = 0, but J intersects many intermediate rings (in fact, every

intermediate ring) nontrivially, so by the corollary, (R, T ) is not a normal pair.

Let us make one quick note regarding the converse of this corollary. That is, one may

wonder whether the condition on the ideals of T is equivalent to (R, T ) being a normal

pair. We answer this quickly in the negative. Simply take any finite extension of fields, say

R = Q ⊂ T = Q(
√

2). Then there is only one ideal of T to check, namely J = 0. Clearly J

intersects every intermediate ring trivially, so that the ideals of T satisfy the conditions of

the corollary. Further, R is complemented, obviously, since it is a field. However (R, T ) is

not a normal pair. On the contrary, T is an algebraic field extension of R, so in particular,

R is not algebraically closed (thus, since R is a field, not integrally closed) in T . For an

example where the rings are not fields, or even domains, simply replace this R and T with

Rn and Tn, respectively, for any natural number n ≥ 2.

We now return to Proposition 6.2.2. If we remove the assumption that J ∩ R = I we

run into problems by Corollary 6.1.8, since if J ∩ R 6= I then R ./ I itself is not even

integrally closed in T ./ J . If it were, we would need R to be integrally closed in T , and
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so by Corollary 6.1.8 the integral closure of R ./ I (in T ./ J) would be RT ./ (J ∩ RT ) =

R ./ (J ∩R) ⊃ R ./ I (cf. the example following Lemma 6.2.1).

Thus the assumption that J ∩ R = I is indispensable in constructing a normal pair

(R ./ I, T ./ J). On the other hand, if we refine this assumption by requiring that J = I,

we are able to strengthen the result by removing the restriction that R be complemented.

In fact we can give this result in the context of general bowtie rings.

Theorem 6.2.4. Let R ⊆ T be a ring extension, f : T → T ′ a ring homomorphism, and J

an f(T )−subalgebra of T ′. Then (R ./f J, T ./f J) is a normal pair if and only if (R, T ) is

a normal pair.

Proof. By Lemma 3.2.13, every ring between R ./f J and T ./f J is of the form S ./f J for

some ring R ⊆ S ⊆ T . Assume that (R, T ) is a normal pair, and thus for each intermediate

ring S, S is integrally closed in T . Then by Theorem 6.1.6 and the comments following it,

we can see that the integral closure of S ./f J in T ./f J is ST ./f (J ∩ f(R) + J
f(R)+J

) =

S ./f (J ∩ (f(R) + J)) = S ./f J , so that S ./f J is integrally closed in T ./f J . Thus

(R ./f J, T ./f J) is a normal pair.

The converse follows immediately from Lemma 6.2.1.

6.3 LO, INC, GU, and GD

In this section we study some properties or ring extension that are closely related to inte-

grality. We will describe these properties briefly before proceeding. Recall that for a ring

extension R ⊂ T , we say that a prime Q ∈ Spec(T ) lies over P ∈ Spec(R) (or contracts to

P in R) if Q ∩R = P .

Definition 6.3.1. Let R ⊂ T be a ring extension. We say that the extension satisfies

lying-over (LO) if for every P ∈ Spec(R), there exists a Q ∈ Spec(T ) lying over P . The

extension satisfies incomparability (INC) if every pair of primes Q0, Q1 ∈ Spec(T ) lying
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over the same prime in R are incomparable; alternatively, whenever Q0 ⊆ Q1 ∈ Spec(T )

lie over P ∈ Spec(R) we have Q0 = Q1. The extension satisfies going-up (GU) if whenever

P0 ⊆ P1 ∈ Spec(R) and Q0 ∈ Spec(T ) lies over P0, there exists a prime Q1 of T lying over

P1 with Q0 ⊆ Q1. The extension satisfies going-down (GD) if whenever P0 ⊆ P1 ∈ Spec(R)

and Q1 ∈ Spec(T ) lies over P1, there exists a Q0 ∈ Spec(T ) lying over P0 with Q0 ⊆ Q1.

We have seen in Corollary 6.1.3 that any extension of the form R ./ I ⊂ R ./ J will

satisfy lying-over, going-up, and incomparability. In this section we will show that any

extension of the form R ./ I ⊂ T ./ J satisfies lying-over (resp., incomparability, going-

up) exactly when R ⊂ T satisfies lying-over (resp., incomparability, going-up). As we will

see however, the conditions for a ring extension of the form R ./ I ⊂ T ./ J (or even

R ./ I ⊂ R ./ J) to satisfy going-down become much more complicated. The results of

this section do not generalize well to the context of general bowtie rings; to avoid requiring

myriad conditions and much longer proofs in all of these results, we will adhere to the case

of simple bowtie rings for the remainder of the chapter.

Proposition 6.3.2. Let R ⊂ T be rings with ideals I, J , respectively, such that I ⊆ J .

Then the extension R ./ I ⊂ T ./ J satisfies lying-over if and only if the extension R ⊂ T

satisfies lying-over.

Proof. First suppose that R ⊂ T satisfies lying-over. Let P0 ∈ Spec(R ./ I). Without loss

of generality we can assume that P0 has the form P0 = {(p, p+ i)|p ∈ P, i ∈ I} for some

P ∈ Spec(R) (by Lemma 2.1.1 this is one of only two possible forms for P0; the case for

the second form will follow by a virtually identical argument). By assumption we can find

a prime Q0 ∈ Spec(T ) contracting to P in R. Then by Lemmas 1.5.8 and 2.1.4, the set

Q0 := {(q, q + j)|q ∈ Q, j ∈ J} is a prime ideal of T ./ J and contracts to P0.

Conversely, suppose that R ./ I ⊂ T ./ J satisfies lying-over, and let P ∈ Spec(R).

Consider the prime P0 := {(p, p+ i)|p ∈ P, i ∈ I} of R ./ I. By assumption some Q0 ∈

Spec(T ./ J) lies over it. If Q0 is of the first form of 2.1.1, say Q = {(q, q + j)|q ∈ Q, j ∈ J}

for some Q ∈ Spec(T ), then by Lemma 2.1.4 it is easy to see that Q ∩ R = P . Thus
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Q ∈ Spec(T ) lies over P .

Finally, if Q0 is of the second form of Lemma 2.1.1, say Q0 = {(q, q + j)|q ∈ Q, j ∈ J}

for some Q ∈ Spec(T ), then by Lemma 2.1.4 its contraction to R ./ I must look like

{(q′ + i, q′)|q′ ∈ Q ∩R, i ∈ I}. Then by assumption we have

{(p, p+ i)|p ∈ P, i ∈ I} =
{

(q′ + i, q′)|q′ ∈ Q ∩R, i ∈ I
}
.

By comparing the second coordinates we see that every p = p + 0 ∈ P must also be in

Q ∩ R. By comparing the first coordinates we see that every q′ = q′ + 0 in Q ∩ R must be

in P . Thus Q ∩R = P , so Q lies over P .

Lemma 6.3.3. [Krull] For a ring R, Nil(R) =
⋂
P where the intersection runs over all

prime ideals P of R.

As in [DS5] we will say that a ring R satisfies ULO if every ring extension R ⊂ T

satisfies lying-over. If R is a zero-dimensional ring then R satisfies ULO (cf. [K, Section

1.6, Exercise 2]), and further R ./ I is zero-dimensional ([D, Remark 2.1]) so also satisfies

ULO.

Proposition 6.3.4. Let I be an ideal of a ring R. If R ./ I satisfies ULO then R satsifies

ULO. Conversely, if R satisfies ULO and I ⊆ Nil(R) then R ./ I satisfies ULO.

Proof. First suppose that R ./ I satisfies ULO. Let R ⊂ S be a ring extension and P ∈

Spec(R). Note that S ./ IS is a ring extension of R ./ I, and P ′ = {(p, p+ i)|p ∈ P, i ∈ I}

is a prime of R ./ I, so by assumption some Q′ ∈ Spec(S ./ IS) lies over P ′. Now

Q′ ∩ (R ./ I) is a prime of R ./ I, and has the form {(q, q + i)|q ∈ Q ∩R, i ∈ I} or

{(q + i, q)|q ∈ Q ∩R, i ∈ I} for some Q ∈ Spec(S). In the first case we conclude that

P = Q ∩ R immediately. In the second case, we have that {(p, p+ i)|p ∈ P, i ∈ I} =

{(q + i, q)|q ∈ Q ∩R, i ∈ I}; setting all the i to zero in the second coordinate gives that
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P ⊆ Q ∩ R and doing so in the first coordinate gives that Q ∩ R ⊆ P . It follows that

Q ∈ Spec(S) lies over P .

For the converse, under the assumption I ⊆ Nil(R), we suppose that R satisfies ULO.

Let R ./ I ⊂ S be a ring extension. Identifying R with R∆ in R × R (as usual) we see

that R∆ ⊂ S is a ring extension, so satisfies lying-over by assumption. Now let P0 ∈

Spec(R ./ I). Since I ⊂ Nil(R), it follows by Lemmas 1.5.8 and 6.3.3 that we can write

P0 = {(p, p+ i)|p ∈ P, i ∈ I} for some prime P of R, and further, P0 is the unique prime of

R ./ I lying over P . By assumption we can find a Q ∈ Spec(S) lying over P , and it follows

that Q ∩ (R ./ I) = P0, so that R ./ I ⊂ S satisfies lying-over.

Proposition 6.3.5. Let R ⊆ T be rings with ideals I, J , respectively, such that I ⊆ J .

Then the extension R ./ I ⊆ T ./ J satisfies INC if and only if the extension R ⊆ T

satisfies INC.

Proof. Suppose R ./ I ⊂ T ./ J satisfies INC. Let Q ⊆ Q′ be primes of T contracting to

the same prime P in R. Define the sets Q0 =

{(q, q + j)|q ∈ Q, j ∈ J}, Q1 = {(q′, q′ + j}, and P0 = {(p, p+ i)|p ∈ P, i ∈ I}. Then by

Lemma 1.5.8, Q0, Q1 ∈ Spec(T ./ J) and P0 ∈ Spec(R ./ I), and by Lemma 2.1.4 both Q0

and Q1 contract to P0 in R ./ I. Then by assumption Q0 = Q1 so we see that Q = Q′.

Thus R ⊂ T satisfies INC.

Conversely, suppose that R ⊂ T satisfies INC. Let Q0 ⊂ Q1 be primes of T ./ J both

contracting to some prime P0 in R ./ I. Note by Lemma 2.1.4 if Q0 is of the first form

(resp. the second form) of Lemma 1.5.8, then we can write P0 in the first form (resp. the

second form) by Lemma 2.1.4.

Suppose that Q0 = {(q, q + j)|q ∈ Q, j ∈ J} for some Q ∈ Spec(T ), so that we can write

P0 = {(p, p+ i)|p ∈ P, i ∈ I} where P = Q∩R. If Q1 = {(q′, q′ + j)|q′ ∈ Q′, j ∈ J}, then it

follows that Q′ ∩ R = P as well. Clearly Q ⊆ Q′ by construction, so since R ⊂ T satisfies

INC, we conclude that Q = Q′; thus Q0 = Q1. The reasoning when all three primes are of
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the second form follows the same logic, by symmetry.

Next suppose That Q0 is of form 1, but Q1 is of form 2. Say Q0 =

{(q, q + j)|q ∈ Q, j ∈ J}, Q1 = {(q′ + j, q′)|q′ ∈ Q′, j ∈ J} for some Q,Q′ ∈ Spec(T ). Then

by Lemma 2.1.4, we can write P0 as {(p, p+ i)|p ∈ P, i ∈ I} where P = Q ∩ R, and as

{(p′ + i, p′)|p′, i ∈ I} with P ′ = Q′ ∩ R. Comparing these two sets we see that P ⊆ P ′ (by

setting the i to zero in the second coordinates) and P ′ ⊆ P (by setting the i to zero in the

first coordinates). Thus P = P ′ = Q ∩ R = Q′ ∩ R. By setting the j to zero in the second

coordinates of their definitions of Q0, Q1 we see that Q ⊆ Q′. Since these contract to the

same prime P in R, we must have Q = Q′, as R ⊂ T satisfies INC. Thus by our definitions

of Q0, Q1, we have the equality

{(q, q + j)|q ∈ Q, j ∈ J} =
{

(q′, q′ + j)|q′ ∈ Q′, j ∈ J
}
⊆

{
(q′ + j, q′)|q′ ∈ Q′, j

}
.

Looking at the second coordinates of the last two sets we see that Q′ + J ⊆ Q′, so that

in particular, J ⊆ Q′. Thus by Lemma 1.5.8, all three of the above sets are equal; that is,

Q0 = Q1.

Finally, suppose that Q0 is of form 2, but Q1 is of form 1. Say Q0 =

{(q + j, q)|q ∈ Q, j ∈ J}, Q1 = {(q′, q′ + j)|q′ ∈ Q′, j ∈ J} for some Q,Q′ ∈ Spec(T ). Then

by Lemma 2.1.4, we can write P0 as {(p+ i, p)|p ∈ P, i ∈ I} where P = Q ∩ R, and as

{(p′, p′ + i)|p′, i ∈ I} with P ′ = Q′ ∩ R. Comparing these two sets we see that P ⊆ P ′ (by

setting the i to zero in the first coordinates) and P ′ ⊆ P (by setting the i to zero in the

second coordinates). Thus P = P ′ = Q ∩ R = Q′ ∩ R. By setting the j to zero in the

first coordinates of their definitions of Q0, Q1 we see that Q ⊆ Q′. Since these contract to

the same prime P in R, we must have Q = Q′, since R ⊂ T satisfies INC. Thus by our
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definitions of Q0, Q1, we have the equality

{(q + j, q)|q ∈ Q, j ∈ J} =
{

(q′ + j, q′)|q′ ∈ Q′, j ∈ J
}
⊆

{
(q′, q′ + j)|q′ ∈ Q′, j

}
.

Looking at the first coordinates of the last two sets we see that Q′ + J ⊆ Q′, so that in

particular, J ⊆ Q′. Thus by Lemma 1.5.8, all three of the above sets are equal; that is,

Q0 = Q1.

As we have covered all possible cases, it follows that R ./ I ⊂ T ./ J satisfies INC.

Proposition 6.3.6. Let R ⊆ T be rings with ideals I, J , respectively, such that I ⊆ J .

Then the extension R ./ I ⊆ T ./ J satisfies going-up if and only if the extension R ⊆ T

satisfies going-up.

Proof. First we will assume that R ⊆ T satisfies going-up. Suppose P0 ⊆ P1 ∈ Spec(R ./ I)

and that Q0 ∈ Spec(T ./ J) contracts to P0 in R ./ I. We wish to find a Q1 ∈ Spec(T ./ J)

contracting to P1 in R ./ I such that Q0 ⊆ Q1.

First we will assume that Q0 is a prime of the first form described in Lemma 1.5.8. Note

by Lemma 2.1.4 that we can also assume P0 is written in this form. Now, if P1 is also in

the form then we have

Q0 = {(q, q + j)|q ∈ Q, j ∈ J}

P0 = {(p, p+ i)|p ∈ P, i ∈ I}

P1 =
{

(p′, p′ + i)|p′ ∈ P ′, i ∈ I
}

where Q ∈ Spec(T ), P, P ′ ∈ Spec(R), and Q ∩ R = P . Since P0 ⊆ P1 it is clear that

P ⊆ P ′. Then, as R ⊂ T satisfies GU, we can find a prime Q′ of T contracting to P ′ in
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R, with Q ⊆ Q′. Then note that Q1 := {(q′, q′ + j)|q′ ∈ Q′, j ∈ J} is a prime in T ./ J by

Lemma 1.5.8. Further, Q0 ⊆ Q1 and Q1 ∩ R ./ I = P1 (by Lemma 2.1.4). Thus Q1 gives

our desired prime.

If we assume that Q0, P0, P1 are all of the second prime form (in the sense of Lemma

1.5.8), then a similar argument gives a prime Q1 = {(q′ + j, q′)|q′ ∈ Q′, j ∈ J} to complete

the diagram.

Next assume that Q0 has form 1 (thus we can assume P0 does as well by Lemma 2.1.4),

and that P1 has form 2. Say Q0 = {(q, q + j)|q ∈ Q, j ∈ J}, P0 = {(p, p+ i)|p ∈ P, i ∈ I},

and P1 = {(p′ + i, p′)|p′ ∈ P ′, i ∈ I} for some primes Q ∈ Spec(T ), P ′ ∈ Spec(R) and with

P = Q ∩R. Then by assumption we have the inclusion P0 ⊆ P1; that is,

{(p, p+ i)|p ∈ P, i ∈ I} ⊆
{

(p′ + i, p′)|p′ ∈ P ′, i ∈ I
}
.

Then setting the p to zero in the second coordinates we see that I ⊆ P ′. But then by

Lemma 1.5.8 we can write P1 in form 1, so that we reduce to the original case where all

three primes involved were of form 1.

Finally, assume that Q0 has form 2 (and so we can write P0 in form 2 as well by

Lemma 2.1.4), and that P1 has form 1. Let us explicitly write these sets, Say Q0 =

{(q + j, q)|q ∈ Q, j ∈ J}, P0 = {(p+ i, p)|p ∈ P, i ∈ I}, and P1 = {(p′, p′ + i)|p′ ∈ P ′, i ∈ I}

for some primes Q ∈ Spec(T ), P ′ ∈ Spec(R) and with P = Q∩R. Again by assumption we

have the inclusion P0 ⊆ P1; in this case, the inclusion looks like

{(p+ i, p)|p ∈ P, i ∈ I} ⊆
{

(p′, p′ + i)|p′ ∈ P ′, i ∈ I
}
.

Now setting the p to zero in the first coordinate, we can see that I ⊆ P ′. Again by Lemma

1.5.8 we are reduced to an earlier case, this time the case where all three primes involved

are of form 2. Since all cases have now been covered, we conclude that R ./ I ⊆ T ./ J

satisfies going-up.

For the converse, suppose that R ./ I ⊆ T ./ J satisfies going-up, and let Q ∈
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Spec(T ), P, P ′ ∈ Spec(R), with Q∩R = P . We wish to find a prime in T containing Q0 and

contracting to P1 in R. By Lemma 1.5.8, the set Q0 := {(q, q + j)|q ∈ Q, j ∈ J} is a prime

ideal of T ./ J and the sets P0 := {(p, p+ i)|p ∈ P, i ∈ I}, P1 := {(p′, p′ + i)|p′ ∈ P ′, i ∈ I}

are prime ideals of R ./ I. Note that Q0 ∩ (R ./ I) = P0 and P0 ⊆ P1. Thus by assumption

we can find a prime ideal Q1 of T ./ J with Q0 ⊆ Q1 and Q1 ∩ (R ./ I) = P1. If Q1

is a prime of the first form of Lemma 1.5.8, say Q1 = {(q′, q′ + j)|q′ ∈ Q′, j ∈ J} for some

Q′ ∈ Spec(T ), then it is easy to see by Lemma 2.1.4 that Q′ will fill the requirements

for our sought prime. Finally, assume that Q1 is of the second form of Lemma 2.1.4, say

Q1 = {(q′ + j, q′)|q′ ∈ Q′, j ∈ J} for some Q′ ∈ Spec(T ). Then Q1 ∩ (R ./ I) = P1, so

{
(q′ + i, q′)|q′ ∈ Q′ ∩R, i ∈ I

}
=
{

(p′, p′ + i)|p′ ∈ P ′, i ∈ I
}
.

By setting the i all to zero in the first coordinate we see that Q′∩R ⊆ P ′, and by setting

the i to zero in the second coordinate we see that P ′ ⊆ Q′∩R. Thus Q′∩R = P . Similarly,

by setting the j to zero in the second coordinate in the definition of Q0 (and noting that

Q0 ⊆ Q1) we see that Q ⊆ Q′. It follows that we can take Q′ as our desired prime. Thus

R ⊆ T satisfies going-up.

We will conclude with an investigation into when an extension of bowtie rings R ./

I ⊆ T ./ J satisfies going-down. These conditions are considerably more complicated than

in the cases for LO, INC, and GU. This as is often the case; for instance, every integral

extension will satisfy LO, INC, and GU, but none of this information is enough to imply

GD.

We will also note that every flat extension of rings satisfies going-down (cf. [M2, p. 33]);

thus we need conditions on I and J that are satisfied by (though not necessarily equivalent

to) the condition J = IT in Theorem 4.2.12. We find the appropriate conditions in the

following theorem.
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Theorem 6.3.7. Let R ⊆ T be an extension of rings with ideals I ⊆ J , respectively. The

ring extension R ./ I ⊆ T ./ J satisfies going-down if and only if R ⊆ T satisfies going-

down and for every pair of primes Q ⊆ Q′ of T with I * Q and J * Q′ it follows that

I * Q′.

Proof. Suppose that R ./ I ⊆ T ./ J satisfies going-down; we will show that R ⊆ T does

as well. Let P ⊆ P ′ be primes of R and Q′ a prime of T such that Q′ ∩ R = P ′. We

must find a prime Q of T , contained in Q′ and contracting to P in R. By Lemma 1.5.8

we can construct primes P0 = {(p, p+ i)|p ∈ P, i ∈ I} ⊆ P1 = {(p′, p′ + i)|p′ ∈ P ′, i ∈ I} of

R ./ I, and Q1 = {(q, q + j)|q ∈ Q, j ∈ J} of T ./ J . By assumption we can now find a

prime Q0 ⊆ Q1 of T ./ J such that Q0 ∩ (R ./ I) = P0.

By Lemma 1.5.8, Q0 may come in one of two forms. If the first form, Q0 =

{(q, q + j)|q ∈ Q, j ∈ J}, then Q ⊆ Q′ clearly, and Q0 ∩ (R ./ I) =

{(q, q + i)|q ∈ Q ∩R, i ∈ I} so Q∩R = P , and we can take Q as our desired prime. If Q0 is of

the second form, Q0 = {(q + j, q)|q ∈ Q, j ∈ J} then the assumption that Q0∩(R ./ I) = P0

gives that {(q + i, q)|q ∈ Q ∩R, i ∈ I} = {(p, p+ i)|p ∈ P, i ∈ I}. Setting all the i to zero

in the left side of this equation gives that Q ∩R ⊆ P and doing the same in the right side

gives P ⊆ Q ∩ R, so Q ∩ R = P . Similarly, setting all the j to zero in the definition of Q0

(and recalling that Q0 ⊆ Q1) we see that Q ⊆ Q′. Thus we can take this Q as the prime

we seek, and it follows that R ⊆ T satisfies going-down.

We may assume that R ⊆ T satisfies going-down for the remainder of the proof. Under

this assumption, we only have to prove that R ./ I ⊆ T ./ J satisfies going-down if and

only if the conditions for I and J (in the statement of the theorem) are met.

Thus, suppose that for any primes Q ⊆ Q′ of T , I * Q and J * Q′ imply that

I * Q′. Let P0 ⊆ P1 be primes of R ./ I and let Q1 ∈ Spec(T ./ J) contract to P1

in R ./ I. First assume that all three of these primes have form (1) in the sense of

Lemma 1.5.8. Say P0 = {(p, p+ i)|p ∈ P, i ∈ I}, P1 = {(p′, p′ + i)|p′ ∈ P ′, i ∈ I}, and Q1 =

{(q′, q′ + j)|q′ ∈ Q′, j ∈ J}. Then we must have P ⊆ P ′, and by Lemma 2.1.4 that Q′∩R =
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P ′. By assumption then we can find a prime Q of T contracting to P in R such that Q ⊆ Q′.

Now take the prime Q0 = {(q, q + j)|q ∈ Q, j ∈ J} of T ./ J to complete the going-down

diagram. The case where all three of the given primes have form (2) (in Lemma 1.5.8) is

similar.

By Lemma 2.1.4 we may assume that P1 and Q1 have the same form. Thus we only

have two remaining situations to consider: where P1 and Q1 have form (1) but P0 has

form (2), and where P1 and Q1 have form (2) but P0 has form (1). These situations are

symmetric, so we will only consider the first, say P0 = {(p+ i, p)|p ∈ P, i ∈ I} ⊆ P1 =

{(p′, p′ + i)|p′ ∈ P ′, i ∈ I}, and Q1 = {(q′, q′ + j)|q′ ∈ Q′, j ∈ J}. Since P0 ⊆ P1 we see that

P ⊆ P ′. Further, by Lemma 2.1.4 it is clear that Q′ ∩ R = P ′. Since R ⊆ T satisfies

going-down, we can find a prime Q of T contracting to P in R with Q ⊆ Q′. We now have

two possible cases to consider.

Case 1: I ⊆ Q.

Set Q0 = {(q, q + j)|q ∈ Q, j ∈ J}, and note that Q0 ⊆ Q1. Further, since Q0 ∩ (R ./

I) = {(p, p+ i)|p ∈ P, i ∈ I} = {(p+ i, p)|p ∈ P, i ∈ I} = P0 (by Lemma 1.5.8) we have

found our desired prime Q0.

Case 2: I * Q.

Note that P1 = Q1 ∩ (R ./ I) = {(q′, q′ + i)|q′ ∈ Q′ ∩R, i ∈ I}. The inclusion P0 ⊆ P1

thus implies that P ⊆ Q′ ∩ R ⊆ Q′. Our assumption (on the converse of this proof) now

gives that J ⊆ Q′ or I * Q′.

First suppose that J ⊆ Q′. Since P ⊆ P ′ = Q′ ∩ R and R ⊆ T satisfies going-

down, we can find a prime Q of T contracting to P in R such that Q ⊆ Q′. Set Q0 =

{(q + j, q)|q ∈ Q, j ∈ J}. Then Q0 contracts to P0 in R ./ I. Pick any (q + j, q) ∈ Q0, and

note that (q + j, q) = (q + j, (q + j)− j) ∈ Q1 since q + j ∈ Q′. Thus Q0 ⊆ Q1, so Q0 gives

the needed prime.

Now instead suppose that I * Q′. We will find a contradiction, showing that this

subcase is impossible. Currently, P1 = {(p′, p′ + i)|p′ ∈ P ′, i ∈ I}. Note that P0 contains all
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elements of the form (i, 0) where i ∈ I. Since P0 ⊆ P1 it follows that I ⊆ P ′ = Q′ ∩R ⊆ Q′.

For the converse, suppose that there exist primes Q ⊆ Q′ of T such that I * Q

and J * Q′ but I ⊆ Q′. We will show that going-down does not hold for the ex-

tension R ./ I ⊆ T ./ J . Consider the primes P0 = {(p, p+ i)|p ∈ P} and Q1 =

{(q′ + j, q′)|q′ ∈ Q′, j ∈ J} of R ./ I and T ./ J , respectively, where P := Q ∩ R. Then

Q1∩(R ./ I) = {(p′ + i, p′)|p′ ∈ P ′ = Q′ ∩R, i ∈ I} = {(p′, p′ + i)|p′ ∈ P ′, i ∈ I} by Lemma

2.1.4 and [D, Proposition 5] (since I ⊆ Q′). Since P ⊆ P ′ (that is, Q∩R ⊆ Q′ ∩R) we now

have that P0 ⊆ P1. If R ./ I ⊆ T ./ J satisfies going-down, then we should now be able to

find a prime Q0 of T ./ J contained in Q1 and contracting to P0 in R ./ I. We will show

that this is impossible.

Suppose we are able to find such a Q0. Then P0 ⊆ Q0 necessarily. Now for some prime

Q of T , Q0 has the form {(q, q + j)|q ∈ Q, j ∈ J} or {(q + j, q)|q ∈ Q, j ∈ J}. Assume it has

the first form. Since J * Q′ we can find a j ∈ J \Q′. But then (0, j) ∈ Q0\Q1, contradicting

that Q0 ⊆ Q1. Now assume it has the second form. Since Q0 contracts to P0 in R ./ I

we have by Lemma 2.1.4 that {(q + i, q)|q ∈ Q ∩R, i ∈ I} = {(p, p+ i)|p ∈ P, i ∈ I}. Note

that the left set contains all elements in R ./ I of the form (i, 0), which implies that

I ⊆ P = Q ∩R, contradicting the assumption that I * Q. It follows that going-down does

not hold.

Corollary 6.3.8. Let R ⊆ T be rings with ideals I ⊆ J , respectively, such that R ⊆ T

satisfies going-down. If I ⊆ Nil(R), then the extension R ./ I ⊆ T ./ J satisfies going-

down.

Proof. Since any nilpotent element of R is a nilpotent element of T , then I is contained in

Nil(T ). Thus I is contained in every prime Q of T by Lemma 6.3.3, whence we have by

Theorem 6.3.7 that R ./ I ⊂ T ./ J satisfies going down.

Since R ∼= R∆ := R ./ 0 the following is now immediate.
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Corollary 6.3.9. Let I be an ideal of a ring R. Then the extension R ⊂ R ./ I satisfies

going-down.

We now have an easy way to construct such an extension of bowtie rings R ./ I ⊂ R ./ J

where going-down holds: simply choose an ideal I contained in Nil(R). To avoid trivialities

and show that the necessary and sufficient condition given in the theorem does not always

hold, we give the following simple example.

Example 6.3.10. In Theorem 6.3.7, set R = T = Z[X], Q = (0), I = Q′ = (X), and

J = (2, X). Then (by the theorem, with Corollary 6.1.3) the ring extension Z[X] ./ (X) ⊂

Z[X] ./ (2, X) is an integral extension that does not satisfy going-down.

It is not hard to see that we could construct a similar example with any ring R where

dim(R) ≥ 2. We express this with the following corollary.

Corollary 6.3.11. Let I ⊂ J be ideals of a ring R. If I ∈ Spec(R) \Min(R), then the

extension R ./ I ⊂ R ./ J is an integral extension that does not satisfy going-down.

Proof. In the statement of Theorem 6.3.7, set Q′ equal to I and set Q equal to any prime

that I properly contains. The integrality follows from Corollary 6.1.3.

Corollary 6.3.12. Let I ⊂ J be ideals of a ring R. If I is not prime and there are no

primes lying between I and J (via set inclusion), then R ./ I ⊆ R ./ J satisfies going-down.

Finally, we can use simple bowtie rings to give examples of integral extensions that are

minimal and satisfy GD (as well as LO, INC, and GU by [K, Theorem 44]).

Corollary 6.3.13. Let I ⊂ J be ideals of a chained ring R. If I is not prime and J/I

is simple (as an R−module) then R ./ I ⊂ R ./ J is an integral minimal extension that

satisfies going-down.

Proof. Integrality follows from Corollary 6.1.3, minimality from Corollary 3.2.5. Regarding

going-down, note that for any prime Q of R, the inclusion I ⊆ Q implies that J ⊆ Q.
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Even if we do not assume minimality, we can still construct an integral λ−extension

that satisfies going-down, citing Corollary 3.2.8.

Example 6.3.14. The ring extension Z2Z ./ 4Z2Z ⊂ Z2Z ./ 2Z2Z is a minimal extension,

it is integral (so satisfies LO, INC, and GD), and it satisfies going-down. If we replace

4Z2Z with any other ideal of Z2Z properly contained in 4Z2Z, then this extension it is a

non-minimal λ−extension that is integral and satisfies going-down.
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